[1]李敏,张迎颖,王岩,等.不同强化处理措施生态沟渠的净化效果对比分析[J].江苏农业学报,2025,(03):526-536.[doi:doi:10.3969/j.issn.1000-4440.2025.03.012]
 LI Min,ZHANG Yingying,WANG Yan,et al.Comparative analysis of purification effect of ecological ditches with different enhanced treatment measures[J].,2025,(03):526-536.[doi:doi:10.3969/j.issn.1000-4440.2025.03.012]
点击复制

不同强化处理措施生态沟渠的净化效果对比分析()
分享到:

江苏农业学报[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2025年03期
页码:
526-536
栏目:
耕作栽培·资源环境
出版日期:
2025-03-31

文章信息/Info

Title:
Comparative analysis of purification effect of ecological ditches with different enhanced treatment measures
作者:
李敏12张迎颖2王岩2张志勇2苏国东3刘海琴2宋雪飞2姜智绘2
(1.江苏大学环境与安全工程学院,江苏镇江212013;2.江苏省农业科学院农业资源与环境研究所/农业农村部长江下游平原农业环境重点实验室,江苏南京210014;3.江苏省农业科学院休闲农业研究所,江苏南京210014)
Author(s):
LI Min12ZHANG Yingying2WANG Yan2ZHANG Zhiyong2SU Guodong3LIU Haiqin2SONG Xuefei2JIANG Zhihui2
(1.School of Environment and Safety Engineering,Jiangsu University, Zhenjiang 212013, China;2.Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences/Key Laboratory of Agricultural Environment in the Lower Reaches of the Yangtze River Plain, Ministry of Agriculture and Rural Affairs, Nanjing 210014, China;3.Institute of Leisure Agriculture, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China)
关键词:
生态沟渠农田退水削减率
Keywords:
ecological ditchdrainage of farmlandreduction ratenitrogenphosphorous
分类号:
X52
DOI:
doi:10.3969/j.issn.1000-4440.2025.03.012
文献标志码:
A
摘要:
本研究旨在研究不同降雨条件下具有不同强化处理措施的生态沟渠对农田退水中主要污染物的净化效果。利用江苏省农业科学院试验基地内3条同样规格的沟渠,沿程种植水生植物金线菖蒲和矮生苦草,并增设生态填料箱和生态滤坝,构建生态沟渠。按照强化处理措施的不同,3条生态沟渠的设置分别为:D1,1个填料箱和1座滤坝;D2,2个填料箱和2座滤坝;D3,3个填料箱和3座滤坝。对应于不同降雨强度,设置了3种沟渠进水流量。在动态连续进水条件下,分析不同强化处理生态沟渠对农田退水中总氮、总磷、化学需氧量和铵态氮的净化效果。结果显示,相同试验条件下,低流量(0.7 m3/h)运行下的生态沟渠净化效果最好;相关指标综合评价分析结果显示,D3的净化效果最优。本试验中降雨强度为中雨时,生态沟渠的拦截净化效果较优;当降雨强度为大到暴雨时,可选用D3的强化处理措施,并在生态沟渠滤坝中增加高效吸附填料,或在承接沟渠出水的塘浜内增设强化净化设施。本研究中试验植物金线菖蒲的生物量以及对氮磷的吸收量均远高于矮生苦草。
Abstract:
The purpose of this research was to study the purification effect of different enhanced ecological ditches on the main pollutants in farmland drainage water under rainfall condition. Three ditches with the same specifications in the experimental base of Jiangsu Academy of Agricultural Sciences were used to plant aquatic plants Acorus gramineus and Vallisneria natans along the way, and ecological filling boxes and ecological filter dams were added to construct ecological ditches. According to the different strengthening treatment measures, the ecological ditches were set as follows: D1, one packing box and one filter dam; D2, two packing boxes and two filter dams; D3, three packing boxes and three dams. Corresponding to different rainfall intensities, three kinds of channel inflow rates namely moderate rain, heavy rain and rainstorm were set up. Under the condition of dynamic continuous water inflow, the purification effects of different enhanced ecological ditches on total nitrogen, total phosphorus, chemical oxygen demand and NH+4-N in farmland drainage water were analyzed. The results showed that under the same experimental conditions, the purification effect of ecological ditch under low flow rate (0.7 m3/h) was the best. Comprehensive evaluation and analysis of relevant indicators showed that D3 had the best purification effect. In this experiment, the interception and purification effect of the ecological ditch was relatively better when the rainfall intensity was moderate. When the rainfall intensity was heavy to stormy, the enhanced treatment D3 could be selected, and high-efficiency adsorbent fillers could be added to the filter dam of the ecological ditch, or enhanced purification facilities could be added to the pond which received the ditch outflow. In this study, the biomass of the experimental plant Acorus gramineus and its absorption of nitrogen and phosphorus were both significantly higher than those of Vallisneria natans.

参考文献/References:

[1]刘福兴,王俊力,付子轼,等. 不同规格生态沟渠对排水污染物处理能力的研究[J]. 土壤学报,2019,56(3):561-570.
[2]杨正伟. 我国农业面源污染现状及综合防控措施[J]. 乡村科技,2019(10):116-118.
[3]中华人民共和国生态环境部,国家统计局,中华人民共和国农业农村部. 第二次全国污染源普查公报[R/OL]. (2020-06-08)
[2024-03-21]. https://www.mee.gov.cn/home/ztbd/rdzl/wrypc/zlxz/202006/t20200616_784745.html.
[4]中华人民共和国环境保护部,国家统计局,中华人民共和国农业部. 第一次全国污染源普查公报[R/OL]. (2010-02-06)
[2024-03-21]. https://www.stats.gov.cn/sj/tjgb/qttjgb/qgqttjgb/202302/t20230218_1913282.html.
[5]刘福兴,陈桂发,付子轼,等. 不同构造生态沟渠的农田面源污染物处理能力及实际应用效果[J]. 生态与农村环境学报,2019,35(6):787-794.
[6]梁善,杜建军,刘雯,等. 生态沟渠净化水体营养污染物质的研究进展[J]. 仲恺农业工程学院学报,2019,32(4):56-61.
[7]黄俣晴,陈婷婷,李勇,等. 流域沟渠植草拦截农田氮磷入河污染的有效性研究[J]. 植物营养与肥料学报,2021,27(11):1993-2000.
[8]REN Y B, REN N Q, LI X K, et al. Efficiency of urban wetlands in removing agricultural non-point source pollution[J]. Asian Journal of Chemistry,2013,25(9):4726-4730.
[9]王华栋,唐浩,张卫. 生态沟渠对农田径流污染物的去除效果[J]. 环境污染与防治,2021,43(9):1083-1088.
[10]王岩,王建国,李伟,等. 三种类型农田排水沟渠氮磷拦截效果比较[J]. 土壤,2009,41(6):902-906.
[11]TANG W Z, ZHANG W Q, ZHAO Y, et al. Nitrogen removal from polluted river water in a novel ditch-wetland-pond system[J]. Ecological Engineering,2013,60(110):135-139.
[12]KUMWIMBA M N, MENG F G, ISEYEMI O, et al. Removal of non-point source pollutants from domestic sewage and agricultural runoff by vegetated drainage ditches (VDDs): design, mechanism, management strategies, and future directions[J]. Science of the Total Environment,2018,639:742-759.
[13]VYMAZAL J. Removal of nutrients, organics and suspended solids in vegetated agricultural drainage ditch[J]. Ecological Engineering,2018,118:97-103.
[14]潘宝骏. 五种常用的多指标综合评价方法[J]. 海峡预防医学杂志,1998(2):63-66.
[15]孙璇,李茹,辛媛媛. “海绵城市”建设中生态沟渠实验分析[J]. 西安工程大学学报,2017,31(2):197-203.
[16]程浩淼,季书,葛恒军,等. 生态沟渠对农田面源污染的消减机理及其影响因子分析[J]. 农业工程学报,2022,38(21):42-52.
[17]余红兵,肖润林,杨知建,等. 灌溉和降雨条件下生态沟渠氮、磷输出特征研究[J]. 长江流域资源与环境,2014,23(5):686-692.
[18]KROGER R, COOPER C M, MOORE M T. A preliminary study of an alternative controlled drainage strategy in surface drainageditches: low-grade weirs[J]. Agricultural Water Management,2008,95(6):678-684.
[19]MOORE M T, KROGER R, LOCKE M A, et al. Nutrient mitigation capacity in Mississippi Delta, USA drainage ditches[J]. Environmental Pollution,2010,158(1):175-184.
[20]秦沂樟,白静,赵健,等. 生态沟渠磷拦截效应对不同因子的响应特征[J]. 农业工程学报,2022,38(增刊1):122-130.
[21]曾雪梅,李力群,方晨雨,等. 用于控制微流域及农村面源水污染的生态拦污坝技术研究[J]. 云南化工,2019,46(5):52-53.
[22]杨林章,周小平,王建国,等. 用于农田非点源污染控制的生态拦截型沟渠系统及其效果[J]. 生态学杂志,2005,24(11):1371-1374.
[23]WANG T, HU B, ZHOU M H. Ecological ditch system for nutrient removal of rural domestic sewage in the hilly area of the central Sichuan Basin, China[J]. Journal of Hydrology,2019,570:839-849.
[24]常小云,张树楠,张苗苗,等. 绿狐尾藻生态沟渠在低温状态下对磷的去除[J]. 农业环境科学学报,2021,40(4):852-858.
[25]顾兆俊,刘兴国,程果锋,等. 淡水池塘4种生态沟渠净化效果研究[J]. 江苏农业科学,2020,48(13):285-291.
[26]张树楠,肖润林,余红兵,等. 水生植物刈割对生态沟渠中氮、磷拦截的影响[J]. 中国生态农业学报,2012,20(8):1066-1071.
[27]张迎颖,闻学政,姚一丹,等. 农田汇水河道水生植物原位净化工程处理效果分析[J]. 农业环境科学学报,2019,38(7):1607-1615.
[28]马明海,刘岚英,赵莎莎,等. 石菖蒲净化微污染水体中氮和磷的试验研究[J]. 安徽农业科学,2020,48(14):39-41.
[29]姜翠玲,范晓秋,章亦兵. 非点源污染物在沟渠湿地中的累积和植物吸收净化[J]. 应用生态学报,2005,16(7):1351-1354.
[30]SAEED T, SUN G. A review on nitrogen and organics removal mechanisms in subsurface flow constructed wetlands:dependency on environmental parameters, operating conditions and supporting media[J]. Journal of Environmental Management,2012,112:429-448.
[31]LUO P, LIU F, ZHANG S N, et al. Evaluating organics removal performance from lagoon-pretreated swine wastewater in pilot-scale three-stage surface flow constructed wetlands[J]. Chemosphere,2018,211:286-293.
[32]殷小锋,胡正义,周立祥,等. 滇池北岸城郊农田生态沟渠构建及净化效果研究[J]. 安徽农业科学,2008,36(22):9676-9679,9689.
[33]王建国,刘晓红. 微生物对有机物降解过程的研究进展[J]. 环境污染与防治,2021,43(2):80-85.
[34]周煜琦,张照婧,位光山,等. 全球变化下海岸带微生物生态研究进展[J]. 微生物学报,2021,61(6):1743-1760.
[35]张昱,王振宇,杨敏. 环境净化中的微生物生态学[J]. 化学进展,2009,21(增刊1):566-571.
[36]杨希妤,田湘,吴庆标. 广西南亚热带不同森林类型土壤细菌群落多样性及其与土壤化学性质相关分析[J]. 南方农业学报,2024,55(4):954-963.
[37]罗路云,王殿东,赵志祥,等. 辣椒根际土壤细菌群落与理化性质互作分析[J]. 南方农业学报,2024,55(4):964-972.
[38]赵莎,李为萍,冯梁,等. 亏缺灌溉对河套灌区向日葵土壤微生物群落结构多样性的影响[J]. 排灌机械工程学报,2024,42(1):71-78.
[39]杨立军,徐源,高涵,等. 基于高通量技术分析粉防己不同组织内生细菌多样性及功能预测[J]. 江苏农业科学,2023,51(17):19-28.
[40]刘雯雯,张旭,黄奇,等. 基于高通量测序的明日叶不同组织内生菌群落结构分析[J]. 南方农业学报,2023,54(6):1622-1632.
[41]曾广娟,冯阳,吴舒,等. 有机种植与常规种植蔬菜地土壤细菌群落多样性分析[J]. 江苏农业科学,2023,51(7):197-205.
[42]李昱,孟冲,李亮,等. 生态沟渠处理农业面源污水研究现状[C]//中国环境科学学会. 2019中国环境科学学会科学技术年会论文集. 沈阳:东北大学资源与土木工程学院,2019.
[43]孔令华,施春红,马方曙,等. 不同填料潮汐流人工湿地处理SBR尾水的对比[J]. 环境工程学报,2017,11(1):379-385.
[44]冯硕,赵凌栋,赵进勇,等. 生态净水堰填料及布局系统试验研究[J]. 环境生态学,2020,2(4):72-77.
[45]彭杰帅,伍佑伦,宋文杰,等. 一种可净化水质的生态透水坝[J]. 湖南水利水电,2020(3):55-57.
[46]张文生,于鲁冀,吕晓燕,等. 生态滤坝坡度对水体污染物去除效率的影响[J]. 环境工程,2018,36(8):30-34.
[47]王功,魏东洋,方晓航,等. 3种湿地填料对水体中氮磷的吸附特性研究[J]. 环境污染与防治,2012,34(11):9-13.
[48]KIM J S, OH S Y, OH K Y. Nutrient runoff from a Korean rice paddy watershed during multiple storm events in the growing season[J]. Journal of Hydrology,2006,327(1/2):128-139.

备注/Memo

备注/Memo:
收稿日期:2024-05-17基金项目:江苏省重点研发计划项目(D21YFD17008);国家重点研发计划项目(2021YFD1700805-02);江苏省农业科技自主创新基金项目[CX(22)3200];国家重大科技专项水体污染控制与治理专项(2017ZX07202004-07)作者简介:李敏(1999-),女,山东潍坊人,硕士研究生,研究方向为农业面源污染沿程阻控。(E-mail)liminxmz@163.com通讯作者:张志勇,(E-mail)jaaszyzhang@126.com
更新日期/Last Update: 2025-04-27