[1]费思恬,侯鹰翔,宋松泉,等.水稻GT家族成员鉴定及响应非生物胁迫的表达分析[J].江苏农业学报,2025,(03):417-431.[doi:doi:10.3969/j.issn.1000-4440.2025.03.001]
 FEI Sitian,HOU Yingxiang,SONG Songquan,et al.Identification of GT family members in rice and expression analysis in response to abiotic stresses[J].,2025,(03):417-431.[doi:doi:10.3969/j.issn.1000-4440.2025.03.001]
点击复制

水稻GT家族成员鉴定及响应非生物胁迫的表达分析()
分享到:

江苏农业学报[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2025年03期
页码:
417-431
栏目:
遗传育种·生理生化
出版日期:
2025-03-31

文章信息/Info

Title:
Identification of GT family members in rice and expression analysis in response to abiotic stresses
作者:
费思恬123侯鹰翔12宋松泉1罗勇2张超12
(1.湘南学院南岭现代种业研究院,湖南郴州423000;2.湘南学院化学与环境科学学院,湖南郴州423000;3.湘南学院郴州市汝城小黄姜繁育技术研发中心,湖南郴州423000)
Author(s):
FEI Sitian123HOU Yingxiang12SONG Songquan1LUO Yong2ZHANG Chao12
(1.Nanling Research Institute for Modern Seed Industry, Xiangnan University, Chenzhou 423000, China;2.College of Chemistry and Environmental Science, Xiangnan University, Chenzhou 423000, China;3.R&D Center for Breeding Technology of Rucheng Small Yellow Ginger in Chenzhou City, Xiangnan University, Chenzhou 423000, China)
关键词:
水稻GT家族生物信息学基因表达非生物胁迫
Keywords:
riceGT familybioinformaticsgene expressionabiotic stress
分类号:
S511
DOI:
doi:10.3969/j.issn.1000-4440.2025.03.001
文献标志码:
A
摘要:
GT家族是植物中一类重要的转录因子,在植物生长发育以及逆境响应中发挥重要作用。本研究结合生物信息学和转录组学对该家族成员、蛋白质理化性质、进化关系以及非生物胁迫响应模式进行分析。结果表明,水稻基因组中共有52个GT基因,这些基因分布在12条染色体上。基于系统进化分析,GT蛋白家族可分为3个亚家族。大多数GT基因在水稻叶片、叶鞘、根和茎等营养器官中的相对表达量较低,而在花序、胚和胚乳等生殖器官中的相对表达量较高。相较于油菜素内酯(BR)、细胞分裂素(CTK)和赤霉素(GA),GT基因对脱落酸(ABA)、茉莉酸(JA)和生长素(IAA)的响应更为显著,表明GT家族成员可能参与ABA、JA和IAA介导的植物逆境响应过程。在光周期下,OsGT2、OsGT18、OsGT17、OsGT25和OsGT10的相对表达量呈现昼降夜升的表达模式,OsGT15、OsGT34和OsGT16的相对表达量呈现昼升夜降的表达模式。这些基因的表达可能受到光信号的调控。盐胁迫下,OsGT2在耐盐品种盐稻3931和广湘24S中的相对表达量上升,在不耐盐品种19H216和晶4155S中的相对表达量下降。水淹胁迫下,OsGT51、OsGT48在耐水淹品种LS273根系中的相对表达量下降,在不耐水淹品种ZZ39根系中的相对表达量与对照相比无显著差异。表明OsGT51、OsGT48可能参与了水稻对水淹胁迫的响应过程。随着高温胁迫、干旱胁迫和重金属镉胁迫时间的延长,中花11大多数GT基因的相对表达量下降,仅有少数GT基因的相对表达量上升。本研究结果为深入解析GT转录因子家族在水稻生长发育和逆境响应中的分子机制提供了重要依据。
Abstract:
The GT family is an important class of transcription factors in plants, playing a crucial role in plant growth, development, and stress responses. In this study, bioinformatics and transcriptomics were combined to analyze the protein physicochemical properties, evolutionary relationships, and abiotic stress response patterns of the family members. The results showed that there were 52 GT genes in the rice genome, which were distributed on 12 chromosomes. Based on phylogenetic analysis, the GT protein family could be divided into three subfamilies. The relative expression levels of most GT genes were low in vegetative organs such as rice leaves, leaf sheaths, roots, and stems. In contrast, relatively high expression levels were observed in reproductive organs such as inflorescences, embryos, and endosperms. Compared with brassinosteroid (BR), cytokinin (CTK), and gibberellin (GA), GT genes responded more significantly to abscisic acid (ABA), jasmonic acid (JA), and auxin (IAA), indicating that GT family members may be involved in the plant stress response processes mediated by ABA, JA, and IAA. Under photoperiod conditions, the relative expression levels of OsGT2, OsGT18, OsGT17, OsGT25, and OsGT10 decreased during the day and increased at night, while those of OsGT15, OsGT34, and OsGT16 increased during the day and decreased at night. The expression of these genes may be regulated by light signals. Under salt stress, the relative expression level of OsGT2 increased in the salt-tolerant varieties Yandao 3931 and Guangxiang 24S, but decreased in the salt-sensitive varieties 19H216 and Jing 4155S. Under waterlogging stress, the relative expression levels of OsGT51 and OsGT48 decreased in the roots of the waterlogging-tolerant variety LS273, while the relative expression levels in the roots of the waterlogging-sensitive variety ZZ39 were not significantly different from the control. This indicated that OsGT51 and OsGT48 may be involved in the response of rice to waterlogging stress. With the prolongation of high-temperature stress, drought stress, and heavy metal cadmium stress, the relative expression levels of most GT genes in Zhonghua 11 decreased, while only a few GT genes showed an increase. The results of this study provide an important basis for in-depth analysis of the molecular mechanisms of the GT transcription factor family in rice growth, development, and stress responses.

参考文献/References:

[1]WANG R, HONG G F, HAN B. Transcript abundance of rml1,encoding a putative GT1-like factor in rice,is up-regulated by Magnaporthe grisea and down-regulated by light[J]. Gene,2004,324:105-115.
[2]罗军玲,赵娜,卢长明. 植物Trihelix转录因子家族研究进展[J]. 遗传,2012,34(12):1551-1560.
[3]QIN Y, MA X, YU G H, et al. Evolutionary history of trihelix family and their functional diversification[J]. DNA Research,2014,21:499-510.
[4]KAPLAN-LEVY R N, BREWER P B, QUON T, et al. The trihelix family of transcription factors-light,stress and development[J]. Trends in Plant Science,2012,17(3):163-171.
[5]向小雪,娄红梅,杨庆玲. Trihelix转录因子家族研究进展[J]. 安徽农业科学,2022,50(6):7-11.
[6]周颖君,王浩,纪剑辉. 植物Trihelix转录因子家族的分类、结构和功能研究进展[J]. 湖北农业科学,2015,54(22):5501-5503,5547.
[7]XU H Y, SHI X X, HE L, et al. Arabidopsis thaliana trihelix transcription factor AST1 mediates salt and osmotic stress tolerance by binding to a novel AGAG-Box and some GT motifs[J]. Plant Cell Physiology,2018,59(5):946-965.
[8]OSORIO M B, BCKER-NETO L, CASTILHOS G, et al. Identification and in silico characterization of soybean trihelix-GT and bHLH transcription factors involved in stress responses[J]. Genetics Molecular Biology,2012,35(S1):233-246.
[9]YU C Y, SONG L L, SONG J W, et al. ShCIGT,a trihelix family gene,mediates cold and drought tolerance by interacting with SnRK1 in tomato[J]. Plant Science,2018,270:140-149.
[10]WANG Z C, LIU Q G, WANG H Z, et al. Comprehensive analysis of trihelix genes and their expression under biotic and abiotic stresses in Populus trichocarpa[J]. Scientific Reports,2016(6):36274.
[11]LI K Y, FAN Y, ZHOU G Y, et al. Genome-wide identification, phylogenetic analysis, and expression profiles of trihelix transcription factor family genes in quinoa(Chenopodium quinoa Willd. ) under abiotic stress conditions[J]. BMC Genomics,2022,23(1):499.
[12]SONG A P, WU D, FAN Q Q, et al. Transcriptome-wide identification and expression profiling analysis of Chrysanthemum trihelix transcription factors[J]. International Journal of Molecular Science,2016,17(2):1-13.
[13]宁小萌,孙晶晶,冯思雨,等. 白桦Trihelix家族全基因组鉴定及抗病表达模式分析[J]. 西北植物学报,2022,42(6):920-929.
[14]DEHESH K, HUNG H, TEPPERMAN J M, et al. GT-2:a transcription factor with twin autonomous DNA-binding domains of closelyrelated but different target sequence specificity[J]. The EMBO Journal,1992,11(11):4131-4144.
[15]陆婷婷. 水稻全长cDNA序列的比较分析、相关数据库的构建植物与动物trihelix转录因子基因家族的比较研究[D]. 上海:上海交通大学,2011.
[16]杨有新,王峰,蔡加星,等. 光质和光敏色素在植物逆境响应中的作用研究进展[J]. 园艺学报,2014,41(9):1861-1872.
[17]于冰,陈孟迪,王宇光. 植物三螺旋Trihelix转录因子家族与环境相互作用的研究进展[J]. 植物遗传资源学报,2019(5):1134-1140.
[18]卢惠君,李子义,贺子航,等. 植物Trihelix转录因子响应非生物胁迫的研究进展[J]. 分子植物育种,2019,17(10):3241-3246.
[19]GREEN P J, KAY S A, CHUA N H. Sequence-specific interactions of a pea nuclear factor with light-responsive elements upstreamof the rbcS-3A gene[J]. The EMBO Journal,1987,9(6):2543-2549.
[20]YANG L L, QI S L, TOUQEER A, et al. SlGT11 controls floral organ patterning and floral determinacy in tomato[J]. BMC Plant Biology,2020,20(1):562.
[21]GAO M J, LYDIATE D J, LI X, et al. Repression of seed maturation genes by a trihelix transcriptional repressor in Arabidopsis seedlings[J]. The Plant Cell,2009,21(1):54-71.
[22]BREWE P B, HOWLES P A, DORIAN K, et al. PETAL LOSS,a trihelix transcription factor gene,regulates perianth architecture in the Arabidopsis flower[J]. Development,2004,131(16):4035-4045.
[23]GRIFFITH M E, DA SILVA CONCEICAO A, SMYTH D R. PETAL LOSS gene regulates initiation and orientation of second whorl organs in the Arabidopsis flower[J]. Development,1999,126(24):5635-5644.
[24]BREUER C, KAWAMURA A, ICHIKAWA T, et al. The trihelix transcription factor GTL1 regulates ploidy-dependent cell growth in the Arabidopsis trichome[J]. The Plant Cell,2009,21(8):2307-2322.
[25]WAN C M, LI C M, MA X Z, et al. GRY79 encoding a putative metallo-β-lactamase-trihelix chimera is involved in chloroplast development at early seedling stage of rice[J]. Plant Cell Report,2015,34(8):1353-1363.
[26]BARR M S, WILLMANN M R, JENIK P D. Is there a role for trihelix transcription factors in embryo maturation?[J]. Plant Signaling and Behavior,2012,7(2):205-209.
[27]FANG Y J, XIE K B, HOU X, et al. Systematic analysis of GT factor family of rice reveals a novel subfamily involved in stress responses[J]. Molecular Genetics Genomics,2010,283(2):157-169.
[28]SUN W J, CHEN Y, YAO M, et al. Genome-wide characterization of trihelix genes reveals Cqtrihelix23 enhances the salt tolerance in quinoa(Chenopodium quinoa)[J]. Physiologia Plantarum,2024,176(1):e14170.
[29]YOO C Y, PENCE H E, JIN J B, et al. The Arabidopsis GTL1 transcription factor regulates water use efficiency and drought tolerance by modulating stomatal density via transrepression of SDD1[J]. The Plant Cell,2010,22(12):4128-4141.
[30]XIE Z M, ZOU H F, LEI G, et al. Soybean trihelix transcription factors GmGT-2A and GmGT-2B improve plant tolerance to abiotic stresses in transgenic Arabidopsis[J]. PLoS One,2009,4(9):e6898-912.
[31]LANG Z L, XU Z L, LI L Y, et al. Comprehensive genomic analysis of tTrihelix family in tea plant (Camellia sinensis) and their putative roles in osmotic stress[J]. Plants,2023,13(1):70.
[32]XI J, QIU Y J, DU L Q, et al. Plant-specific trihelix transcription factor AtGT2L interacts with calcium/calmodulin and responds to cold and salt stresses[J]. Plant Science,2012(185/186):274-280.
[33]LIU X S, WU D C, SHAN T F, et al. The trihelix transcription factor OsGTγ-2 is involved adaption to salt stress in rice[J]. Plant Molecular Biology,2020,103(4/5):545-560.
[34]纪剑辉,周颖君,吴贺贺,等. 水稻Trihelix转录因子家族全基因组分析及功能预测[J]. 遗传,2015,37(12):1228-1241.
[35]LI J M, ZHANG M H, SUN J, et al. Genome-wide characterization and identification of trihelix transcription factor and expression profiling in response to abiotic stresses in rice (Oryza sativa L.)[J]. International Journal of Molecular Science,2019,20(2):251.
[36]JIN J P, TIAN F, YANG D C, et al. PlantTFDB 4.0:toward a central hub for transcription factors and regulatory interactions in plants[J]. Nucleic Acids Research,2017,45(D1):1040-1045.
[37]李琳,丁峰,潘介春,等. 植物锌指蛋白转录因子家族研究进展[J]. 热带农业科学,2020,40(2):65-75.
[38]黄倩茹,刘晓慧,张爱冬,等. MYB基因家族研究进展[J]. 江西农业学报,2022,34(2):146-153,159.
[39]荣欢,任师杰,汪梓坪,等. 植物NAC转录因子的结构及功能研究进展[J]. 江苏农业科学,2020,48(18):44-53.
[40]颜君,郭兴启,曹学成. WRKY转录因子的基因组水平研究现状[J]. 生物技术通报,2015,31(11):9-17.
[41]张计育,渠慎春,郭忠仁,等. 植物bZIP转录因子的生物学功能[J]. 西北植物学报,2011,31(5):1066-1075.
[42]雷其冬,孙旭东,徐慧妮. 转录因子TCP4参与植物生长发育和抗逆调节研究进展[J]. 华北农学报,2021,36(S1):210-214.
[43]安昌,陆琳,沈梦千,等. 植物bHLH基因家族研究进展及在药用植物中的应用前景[J]. 生物技术通报,2023,39(10):1-16.
[44]LAI X L, DAHER H, GALIEN A, et al. Structural basis for plant MADS transcription factor oligomerization[J]. Computational and Structural Biotechnology Journal,2019,17:946-953.
[45]TIAN J F, ZHANG J H, FRANCIS F. Large-scale identification and characterization analysis of VQ family genes in plants, especially gymnosperms[J]. International Journal Molecular Science,2023,24(19):14968.
[46]WU T, YANG Q H, ZHOU R, et al. Large-scale analysis of trihelix transcription factors reveals their expansion and evolutionary footprint in plants[J]. Physiologia Plantarum,2023,175(5):e14039.

相似文献/References:

[1]王士磊,丁正权,黄海祥.水稻隐性早熟突变体ref早熟性的遗传分析和基因定位[J].江苏农业学报,2016,(04):721.[doi:10.3969/j.issn.100-4440.2016.04.001]
 WANG Shi-lei,DING Zheng-quan,HUANG Hai-xiang.Inheritance and gene mapping of recessive earliness in rice (Oryza sativa L.)[J].,2016,(03):721.[doi:10.3969/j.issn.100-4440.2016.04.001]
[2]王在满,郑乐,张明华,等.不同播种方式对直播水稻倒伏指数和根系生长的影响[J].江苏农业学报,2016,(04):725.[doi:10.3969/j.issn.100-4440.2016.04.002]
 WANG Zai-man,ZHENG Le,ZHANG Ming-hua,et al.Effects of seeding manners on lodging index and root growth of directseeded rice[J].,2016,(03):725.[doi:10.3969/j.issn.100-4440.2016.04.002]
[3]易能,薛延丰,石志琦,等.微囊藻毒素对水稻种子萌发和幼苗生长的胁迫作用[J].江苏农业学报,2016,(04):729.[doi:10.3969/j.issn.100-4440.2016.04.003]
 YI Neng,XUE Yan-feng,SHI Zhi-qi,et al.Inhibitory effect of microcystins on seed germination and seedling growth of rice[J].,2016,(03):729.[doi:10.3969/j.issn.100-4440.2016.04.003]
[4]刘凯,王爱民,严国红,等.一个水稻显性矮秆突变体的遗传特性与降株高能力[J].江苏农业学报,2016,(05):968.[doi:10.3969/j.issn.1000-4440.2016.05.002]
 LIU Kai,WANG Ai-min,YAN Guo-hong,et al.Genetic analysis and plant height reduction of a dominant dwarf mutant of rice[J].,2016,(03):968.[doi:10.3969/j.issn.1000-4440.2016.05.002]
[5]王红,杨镇,裴文琪,等.功能性微生物制剂对镉胁迫下水稻生长及生理特性的影响[J].江苏农业学报,2016,(05):974.[doi:10.3969/j.issn.1000-4440.2016.05.003]
 WANG Hong,YANG Zhen,PEI Wen-qi,et al.Growth and physiological characteristics of cadmium-stressed rice influenced by functional microorganism agent[J].,2016,(03):974.[doi:10.3969/j.issn.1000-4440.2016.05.003]
[6]孙玲,单捷,毛良君,等.基于遥感和Moran's I指数的水稻面积变化空间自相关性研究[J].江苏农业学报,2016,(05):1060.[doi:10.3969/j.issn.1000-4440.2016.05.017]
 SUN Ling,SHAN Jie,MAO Liang-jun,et al.Spatial autocorrelation of changes in paddy rice area based on remote sensing and Moran’s I index[J].,2016,(03):1060.[doi:10.3969/j.issn.1000-4440.2016.05.017]
[7]张晓忆,李卫国,景元书,等.多种光谱指标构建决策树的水稻种植面积提取[J].江苏农业学报,2016,(05):1060.[doi:10.3969/j.issn.1000-4440.2016.05.018]
 ZHANG Xiao-yi,LI Wei-guo,JING Yuan-shu,et al.Extraction of paddy rice area by constructing the decision tree with multiple spectral indices[J].,2016,(03):1060.[doi:10.3969/j.issn.1000-4440.2016.05.018]
[8]裔传灯,李玮,王德荣,等.水稻GW5基因的1212-bp Indel变异对粒形的影响[J].江苏农业学报,2016,(06):1201.[doi:doi:10.3969/j.issn.1000-4440.2016.06.001]
 YI Chuan-deng,LI Wei,WANG De-rong,et al.Effect of 1212-bp Indel variation of gene GW5 on rice grain shape[J].,2016,(03):1201.[doi:doi:10.3969/j.issn.1000-4440.2016.06.001]
[9]刘红江,陈虞雯,张岳芳,等.不同播栽方式对水稻叶片光合特性及产量的影响[J].江苏农业学报,2016,(06):1206.[doi:doi:10.3969/j.issn.1000-4440.2016.06.002]
 LIU Hong-jiang,CHEN Yu-wen,ZHANG Yue-fang,et al.Effects of planting pattern on leaf photosynthetic characteristics and yield of rice[J].,2016,(03):1206.[doi:doi:10.3969/j.issn.1000-4440.2016.06.002]
[10]郭保卫,许轲,魏海燕,等.钵苗机插水稻茎秆的抗倒伏能力[J].江苏农业学报,2016,(06):1280.[doi:doi:10.3969/j.issn.1000-4440.2016.06.014]
 GUO Bao-wei,XU Ke,WEI Hai-yan,et al.Culm lodging resistance characteristics of bowl seedling mechanical-transplanting rice[J].,2016,(03):1280.[doi:doi:10.3969/j.issn.1000-4440.2016.06.014]

备注/Memo

备注/Memo:
收稿日期:2024-07-25基金项目:湖南省教育厅科学研究项目(22C0548);郴州国家可持续发展议程创新示范区建设省级专项(2022sfq06);湖南省科技创新计划资助项目(2023RC3190);湘南学院校级科研项目青年项目(2023XJ33)作者简介:费思恬(1997-),女,湖南郴州人,硕士,助理实验师,主要从事植物分子生物学研究。(E-mail)924770209@qq.com通讯作者:张超,(E-mail)KingofZC@126.com
更新日期/Last Update: 2025-04-27