参考文献/References:
[1]WANG R, HONG G F, HAN B. Transcript abundance of rml1,encoding a putative GT1-like factor in rice,is up-regulated by Magnaporthe grisea and down-regulated by light[J]. Gene,2004,324:105-115.
[2]罗军玲,赵娜,卢长明. 植物Trihelix转录因子家族研究进展[J]. 遗传,2012,34(12):1551-1560.
[3]QIN Y, MA X, YU G H, et al. Evolutionary history of trihelix family and their functional diversification[J]. DNA Research,2014,21:499-510.
[4]KAPLAN-LEVY R N, BREWER P B, QUON T, et al. The trihelix family of transcription factors-light,stress and development[J]. Trends in Plant Science,2012,17(3):163-171.
[5]向小雪,娄红梅,杨庆玲. Trihelix转录因子家族研究进展[J]. 安徽农业科学,2022,50(6):7-11.
[6]周颖君,王浩,纪剑辉. 植物Trihelix转录因子家族的分类、结构和功能研究进展[J]. 湖北农业科学,2015,54(22):5501-5503,5547.
[7]XU H Y, SHI X X, HE L, et al. Arabidopsis thaliana trihelix transcription factor AST1 mediates salt and osmotic stress tolerance by binding to a novel AGAG-Box and some GT motifs[J]. Plant Cell Physiology,2018,59(5):946-965.
[8]OSORIO M B, BCKER-NETO L, CASTILHOS G, et al. Identification and in silico characterization of soybean trihelix-GT and bHLH transcription factors involved in stress responses[J]. Genetics Molecular Biology,2012,35(S1):233-246.
[9]YU C Y, SONG L L, SONG J W, et al. ShCIGT,a trihelix family gene,mediates cold and drought tolerance by interacting with SnRK1 in tomato[J]. Plant Science,2018,270:140-149.
[10]WANG Z C, LIU Q G, WANG H Z, et al. Comprehensive analysis of trihelix genes and their expression under biotic and abiotic stresses in Populus trichocarpa[J]. Scientific Reports,2016(6):36274.
[11]LI K Y, FAN Y, ZHOU G Y, et al. Genome-wide identification, phylogenetic analysis, and expression profiles of trihelix transcription factor family genes in quinoa(Chenopodium quinoa Willd. ) under abiotic stress conditions[J]. BMC Genomics,2022,23(1):499.
[12]SONG A P, WU D, FAN Q Q, et al. Transcriptome-wide identification and expression profiling analysis of Chrysanthemum trihelix transcription factors[J]. International Journal of Molecular Science,2016,17(2):1-13.
[13]宁小萌,孙晶晶,冯思雨,等. 白桦Trihelix家族全基因组鉴定及抗病表达模式分析[J]. 西北植物学报,2022,42(6):920-929.
[14]DEHESH K, HUNG H, TEPPERMAN J M, et al. GT-2:a transcription factor with twin autonomous DNA-binding domains of closelyrelated but different target sequence specificity[J]. The EMBO Journal,1992,11(11):4131-4144.
[15]陆婷婷. 水稻全长cDNA序列的比较分析、相关数据库的构建植物与动物trihelix转录因子基因家族的比较研究[D]. 上海:上海交通大学,2011.
[16]杨有新,王峰,蔡加星,等. 光质和光敏色素在植物逆境响应中的作用研究进展[J]. 园艺学报,2014,41(9):1861-1872.
[17]于冰,陈孟迪,王宇光. 植物三螺旋Trihelix转录因子家族与环境相互作用的研究进展[J]. 植物遗传资源学报,2019(5):1134-1140.
[18]卢惠君,李子义,贺子航,等. 植物Trihelix转录因子响应非生物胁迫的研究进展[J]. 分子植物育种,2019,17(10):3241-3246.
[19]GREEN P J, KAY S A, CHUA N H. Sequence-specific interactions of a pea nuclear factor with light-responsive elements upstreamof the rbcS-3A gene[J]. The EMBO Journal,1987,9(6):2543-2549.
[20]YANG L L, QI S L, TOUQEER A, et al. SlGT11 controls floral organ patterning and floral determinacy in tomato[J]. BMC Plant Biology,2020,20(1):562.
[21]GAO M J, LYDIATE D J, LI X, et al. Repression of seed maturation genes by a trihelix transcriptional repressor in Arabidopsis seedlings[J]. The Plant Cell,2009,21(1):54-71.
[22]BREWE P B, HOWLES P A, DORIAN K, et al. PETAL LOSS,a trihelix transcription factor gene,regulates perianth architecture in the Arabidopsis flower[J]. Development,2004,131(16):4035-4045.
[23]GRIFFITH M E, DA SILVA CONCEICAO A, SMYTH D R. PETAL LOSS gene regulates initiation and orientation of second whorl organs in the Arabidopsis flower[J]. Development,1999,126(24):5635-5644.
[24]BREUER C, KAWAMURA A, ICHIKAWA T, et al. The trihelix transcription factor GTL1 regulates ploidy-dependent cell growth in the Arabidopsis trichome[J]. The Plant Cell,2009,21(8):2307-2322.
[25]WAN C M, LI C M, MA X Z, et al. GRY79 encoding a putative metallo-β-lactamase-trihelix chimera is involved in chloroplast development at early seedling stage of rice[J]. Plant Cell Report,2015,34(8):1353-1363.
[26]BARR M S, WILLMANN M R, JENIK P D. Is there a role for trihelix transcription factors in embryo maturation?[J]. Plant Signaling and Behavior,2012,7(2):205-209.
[27]FANG Y J, XIE K B, HOU X, et al. Systematic analysis of GT factor family of rice reveals a novel subfamily involved in stress responses[J]. Molecular Genetics Genomics,2010,283(2):157-169.
[28]SUN W J, CHEN Y, YAO M, et al. Genome-wide characterization of trihelix genes reveals Cqtrihelix23 enhances the salt tolerance in quinoa(Chenopodium quinoa)[J]. Physiologia Plantarum,2024,176(1):e14170.
[29]YOO C Y, PENCE H E, JIN J B, et al. The Arabidopsis GTL1 transcription factor regulates water use efficiency and drought tolerance by modulating stomatal density via transrepression of SDD1[J]. The Plant Cell,2010,22(12):4128-4141.
[30]XIE Z M, ZOU H F, LEI G, et al. Soybean trihelix transcription factors GmGT-2A and GmGT-2B improve plant tolerance to abiotic stresses in transgenic Arabidopsis[J]. PLoS One,2009,4(9):e6898-912.
[31]LANG Z L, XU Z L, LI L Y, et al. Comprehensive genomic analysis of tTrihelix family in tea plant (Camellia sinensis) and their putative roles in osmotic stress[J]. Plants,2023,13(1):70.
[32]XI J, QIU Y J, DU L Q, et al. Plant-specific trihelix transcription factor AtGT2L interacts with calcium/calmodulin and responds to cold and salt stresses[J]. Plant Science,2012(185/186):274-280.
[33]LIU X S, WU D C, SHAN T F, et al. The trihelix transcription factor OsGTγ-2 is involved adaption to salt stress in rice[J]. Plant Molecular Biology,2020,103(4/5):545-560.
[34]纪剑辉,周颖君,吴贺贺,等. 水稻Trihelix转录因子家族全基因组分析及功能预测[J]. 遗传,2015,37(12):1228-1241.
[35]LI J M, ZHANG M H, SUN J, et al. Genome-wide characterization and identification of trihelix transcription factor and expression profiling in response to abiotic stresses in rice (Oryza sativa L.)[J]. International Journal of Molecular Science,2019,20(2):251.
[36]JIN J P, TIAN F, YANG D C, et al. PlantTFDB 4.0:toward a central hub for transcription factors and regulatory interactions in plants[J]. Nucleic Acids Research,2017,45(D1):1040-1045.
[37]李琳,丁峰,潘介春,等. 植物锌指蛋白转录因子家族研究进展[J]. 热带农业科学,2020,40(2):65-75.
[38]黄倩茹,刘晓慧,张爱冬,等. MYB基因家族研究进展[J]. 江西农业学报,2022,34(2):146-153,159.
[39]荣欢,任师杰,汪梓坪,等. 植物NAC转录因子的结构及功能研究进展[J]. 江苏农业科学,2020,48(18):44-53.
[40]颜君,郭兴启,曹学成. WRKY转录因子的基因组水平研究现状[J]. 生物技术通报,2015,31(11):9-17.
[41]张计育,渠慎春,郭忠仁,等. 植物bZIP转录因子的生物学功能[J]. 西北植物学报,2011,31(5):1066-1075.
[42]雷其冬,孙旭东,徐慧妮. 转录因子TCP4参与植物生长发育和抗逆调节研究进展[J]. 华北农学报,2021,36(S1):210-214.
[43]安昌,陆琳,沈梦千,等. 植物bHLH基因家族研究进展及在药用植物中的应用前景[J]. 生物技术通报,2023,39(10):1-16.
[44]LAI X L, DAHER H, GALIEN A, et al. Structural basis for plant MADS transcription factor oligomerization[J]. Computational and Structural Biotechnology Journal,2019,17:946-953.
[45]TIAN J F, ZHANG J H, FRANCIS F. Large-scale identification and characterization analysis of VQ family genes in plants, especially gymnosperms[J]. International Journal Molecular Science,2023,24(19):14968.
[46]WU T, YANG Q H, ZHOU R, et al. Large-scale analysis of trihelix transcription factors reveals their expansion and evolutionary footprint in plants[J]. Physiologia Plantarum,2023,175(5):e14039.
相似文献/References:
[1]王士磊,丁正权,黄海祥.水稻隐性早熟突变体ref早熟性的遗传分析和基因定位[J].江苏农业学报,2016,(04):721.[doi:10.3969/j.issn.100-4440.2016.04.001]
WANG Shi-lei,DING Zheng-quan,HUANG Hai-xiang.Inheritance and gene mapping of recessive earliness in rice (Oryza sativa L.)[J].,2016,(03):721.[doi:10.3969/j.issn.100-4440.2016.04.001]
[2]王在满,郑乐,张明华,等.不同播种方式对直播水稻倒伏指数和根系生长的影响[J].江苏农业学报,2016,(04):725.[doi:10.3969/j.issn.100-4440.2016.04.002]
WANG Zai-man,ZHENG Le,ZHANG Ming-hua,et al.Effects of seeding manners on lodging index and root growth of directseeded rice[J].,2016,(03):725.[doi:10.3969/j.issn.100-4440.2016.04.002]
[3]易能,薛延丰,石志琦,等.微囊藻毒素对水稻种子萌发和幼苗生长的胁迫作用[J].江苏农业学报,2016,(04):729.[doi:10.3969/j.issn.100-4440.2016.04.003]
YI Neng,XUE Yan-feng,SHI Zhi-qi,et al.Inhibitory effect of microcystins on seed germination and seedling growth of rice[J].,2016,(03):729.[doi:10.3969/j.issn.100-4440.2016.04.003]
[4]刘凯,王爱民,严国红,等.一个水稻显性矮秆突变体的遗传特性与降株高能力[J].江苏农业学报,2016,(05):968.[doi:10.3969/j.issn.1000-4440.2016.05.002]
LIU Kai,WANG Ai-min,YAN Guo-hong,et al.Genetic analysis and plant height reduction of a dominant dwarf mutant of rice[J].,2016,(03):968.[doi:10.3969/j.issn.1000-4440.2016.05.002]
[5]王红,杨镇,裴文琪,等.功能性微生物制剂对镉胁迫下水稻生长及生理特性的影响[J].江苏农业学报,2016,(05):974.[doi:10.3969/j.issn.1000-4440.2016.05.003]
WANG Hong,YANG Zhen,PEI Wen-qi,et al.Growth and physiological characteristics of cadmium-stressed rice influenced by functional microorganism agent[J].,2016,(03):974.[doi:10.3969/j.issn.1000-4440.2016.05.003]
[6]孙玲,单捷,毛良君,等.基于遥感和Moran's I指数的水稻面积变化空间自相关性研究[J].江苏农业学报,2016,(05):1060.[doi:10.3969/j.issn.1000-4440.2016.05.017]
SUN Ling,SHAN Jie,MAO Liang-jun,et al.Spatial autocorrelation of changes in paddy rice area based on remote sensing and Moran’s I index[J].,2016,(03):1060.[doi:10.3969/j.issn.1000-4440.2016.05.017]
[7]张晓忆,李卫国,景元书,等.多种光谱指标构建决策树的水稻种植面积提取[J].江苏农业学报,2016,(05):1060.[doi:10.3969/j.issn.1000-4440.2016.05.018]
ZHANG Xiao-yi,LI Wei-guo,JING Yuan-shu,et al.Extraction of paddy rice area by constructing the decision tree with multiple spectral indices[J].,2016,(03):1060.[doi:10.3969/j.issn.1000-4440.2016.05.018]
[8]裔传灯,李玮,王德荣,等.水稻GW5基因的1212-bp Indel变异对粒形的影响[J].江苏农业学报,2016,(06):1201.[doi:doi:10.3969/j.issn.1000-4440.2016.06.001]
YI Chuan-deng,LI Wei,WANG De-rong,et al.Effect of 1212-bp Indel variation of gene GW5 on rice grain shape[J].,2016,(03):1201.[doi:doi:10.3969/j.issn.1000-4440.2016.06.001]
[9]刘红江,陈虞雯,张岳芳,等.不同播栽方式对水稻叶片光合特性及产量的影响[J].江苏农业学报,2016,(06):1206.[doi:doi:10.3969/j.issn.1000-4440.2016.06.002]
LIU Hong-jiang,CHEN Yu-wen,ZHANG Yue-fang,et al.Effects of planting pattern on leaf photosynthetic characteristics and yield of rice[J].,2016,(03):1206.[doi:doi:10.3969/j.issn.1000-4440.2016.06.002]
[10]郭保卫,许轲,魏海燕,等.钵苗机插水稻茎秆的抗倒伏能力[J].江苏农业学报,2016,(06):1280.[doi:doi:10.3969/j.issn.1000-4440.2016.06.014]
GUO Bao-wei,XU Ke,WEI Hai-yan,et al.Culm lodging resistance characteristics of bowl seedling mechanical-transplanting rice[J].,2016,(03):1280.[doi:doi:10.3969/j.issn.1000-4440.2016.06.014]