[1]赵煜,方国艾,李永国.农业机械手关键技术研究进展[J].江苏农业学报,2025,(02):404-416.[doi:doi:10.3969/j.issn.1000-4440.2025.02.021]
 ZHAO Yu,FANG Guoai,LI Yongguo.Research progress of key technologies of agricultural manipulators[J].,2025,(02):404-416.[doi:doi:10.3969/j.issn.1000-4440.2025.02.021]
点击复制

农业机械手关键技术研究进展()
分享到:

江苏农业学报[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2025年02期
页码:
404-416
栏目:
综述
出版日期:
2025-02-28

文章信息/Info

Title:
Research progress of key technologies of agricultural manipulators
作者:
赵煜方国艾李永国
(上海海洋大学工程学院,上海201306)
Author(s):
ZHAO YuFANG GuoaiLI Yongguo
(College of Engineering Science and Technology, Shanghai Ocean University, Shanghai 201306, China)
关键词:
农业机械手末端执行器传感感知技术视觉技术运动控制技术
Keywords:
agricultural manipulatorsend-effectorsensing and perception technologyvision technologymotion control technology
分类号:
TP241
DOI:
doi:10.3969/j.issn.1000-4440.2025.02.021
文献标志码:
A
摘要:
农业机械手对实现农业现代化具有重要意义。近年来,随着传感技术、计算机视觉以及运动控制技术的快速发展,农业机械手逐渐向智能化、自主化和多功能化方向发展。本研究概述了农业机械手的研究现状及主要结构。基于农业机械手作业环境的复杂性以及作业对象的多样性和差异性,将农业机械手的关键技术归纳为末端执行器设计、传感感知技术、视觉技术和运动控制技术,进一步对末端执行器类型进行分类归纳,分析不同末端执行器的研究现状;对现阶段农业机械手领域的目标识别和定位技术进行了分析和归纳;对当前农业机械手领域的传感感知技术进行了系统总结;对农业机械手作业控制过程进行了综述。最后,针对当前农业机械手存在的问题进行了讨论,并对农业机械手的未来研究进行了展望。
Abstract:
Agricultural manipulators are of great significance to realize agricultural modernization. In recent years, with the rapid development of sensing technology, computer vision and motion control technology, agricultural manipulators have gradually developed in the direction of intelligence, autonomy and multi-function. This paper summarizes the research status and main structures of agricultural manipulators. Based on the complexity of the operating environment of agricultural manipulators and the diversity and difference of the operating objects, the key technologies of agricultural manipulators are summarized as end-effector design, sensing and perception technology, vision technology and motion control technology. The types of end effectors are further classified and summarized, and the research status of different end effectors is analyzed. The target recognition and positioning technologies in the field of agricultural manipulators at this stage are analyzed and summarized. The sensing technologies in the field of agricultural manipulators are systematically summarized. The operation control process of agricultural manipulators is reviewed. Finally, the existing problems of current agricultural manipulators are discussed, and the future research of agricultural manipulators is prospected.

参考文献/References:

[1]刘成良,贡亮,苑 进,等. 农业机器人关键技术研究现状与发展趋势[J]. 农业机械学报,2022,53(7):1-22,55.
[2]REN G Q, LIN T, YING Y B, et al. Agricultural robotics research applicable to poultry production:a review[J]. Computers and Electronics in Agriculture,2020,169:105216.
[3]OLIVEIRA L F P, MOREIRA A P, SILVA M F. Advances in agriculture robotics:a state-of-the-art review and challenges ahead[J]. Robotics,2021,10(2):52.
[4]COLUCCI G, BOTTA A, TAGLIAVINI L, et al. Kinematic modeling and motion planning of the mobile manipulator Agri. Q for precision agriculture[J]. Machines,2022,10(5):321.
[5]刘成良,林洪振,李彦明,等. 农业装备智能控制技术研究现状与发展趋势分析[J]. 农业机械学报,2020,51(1):1-18.
[6]THOMASSON J A, BAILLIE C P, ANTILLE D L, et al. Autonomous technologies in agricultural equipment:a review of the state of the art[C]//AMERICAN SOCIETY OF AGRICULTURAL AND BIOLOGICAL ENGINEERS. 2019 agricultural equipment technology conference. St. Joseph, Michigan, USA: American Society of Agricultural and Biological Engineers,2019:1-17.
[7]BLACKMORE S, STOUT B, WANG M, et al. Robotic agriculture-the future of agricultural mechanisation?[M]//DE GRUYTER BRILL. Proceedings of the 5th european conference on precision agriculture. Wageningen, The Netherlands: Wageningen Academic Publishers, 2005: 621-628.
[8]赵春江. 智慧农业的发展现状与未来展望[J]. 华南农业大学学报,2021,42(6):1-7.
[9]BAC C W, VAN HENTEN E J, HEMMING J, et al. Harvesting robots for high-value crops:state-of-the-art review and challenges ahead[J]. Journal of Field Robotics,2014,31(6):888-911.
[10]BECHAR A, VIGNEAULT C. Agricultural robots for field operations:concepts and components[J]. Biosystems Engineering,2016,149:94-111.
[11]VOUGIOUKAS S G. Agricultural robotics[J]. Annual Review of Control, Robotics, and Autonomous Systems,2019,2(1):365-392.
[12]仇裕淇,黄振楠,阮昭,等. 机器视觉技术在农业生产智能化中的应用综述[J]. 机械研究与应用,2019,32(2):202-206.
[13]HUA Y B, ZHANG N R, YUAN X, et al. Recent advances in intelligent automated fruit harvesting robots[J]. The Open Agriculture Journal,2019,13(1):101-106.
[14]TINOCO V, SILVA M F, SANTOS F N, et al. An overview of pruning and harvesting manipulators[J]. Industrial Robot:the International Journal of Robotics Research and Application,2022,49(4):688-695.
[15]MESHRAM A T, VANALKAR A V, KALAMBE K B, et al. Pesticide spraying robot for precision agriculture:a categorical literature review and future trends[J]. Journal of Field Robotics,2022,39(2):153-171.
[16]ZHANG B, CHEN X G, ZHANG H M, et al. Design and performance test of a jujube pruning manipulator[J]. Agriculture,2022,12(4):552.
[17]KAMANDAR M R, MASSAH J, JAMZAD M. Design and evaluation of hedge trimmer robot[J]. Computers and Electronics in Agriculture,2022,199:107065.
[18]HU G R, CHEN C, CHEN J, et al. Simplified 4-DOF manipulator for rapid robotic apple harvesting[J]. Computers and Electronics in Agriculture,2022,199:107177.
[19]苑进,李扬,刘雪美,等. 禽蛋自动捡拾系统结构设计及机械手运动规划[J]. 农业工程学报,2016,32(8):48-55.
[20]ZHANG X C, WU Z M, CAO C M, et al. Design and operation of a deep-learning-based fresh tea-leaf sorting robot[J]. Computers and Electronics in Agriculture,2023,206:107664.
[21]WILLIAMS H, NEJATI M, HUSSEIN S, et al. Autonomous pollination of individual kiwifruit flowers:toward a robotic kiwifruit pollinator[J]. Journal of Field Robotics,2020,37(2):246-262.
[22]BAO X L, NIU Y X, LI Y S, et al. Design and kinematic analysis of cable-driven target spray robot for Citrus orchards[J]. Applied Sciences,2022,12(18):9379.
[23]MU L T, CUI G P, LIU Y D, et al. Design and simulation of an integrated end-effector for picking kiwifruit by robot[J]. Information Processing in Agriculture,2020,7(1):58-71.
[24]YANG Q H, DU X Q, WANG Z H, et al. A review of core agricultural robot technologies for crop productions[J]. Computers and Electronics in Agriculture,2023,206:107701.
[25]LI Z Y, YUAN X J, WANG C Y. A review on structural development and recognition-localization methods for end-effector of fruit-vegetable picking robots[J]. International Journal of Advanced Robotic Systems,2022,19(3):17298806221104906.
[26]ROSHANIANFARD A, NOGUCHI N. Pumpkin harvesting robotic end-effector[J]. Computers and Electronics in Agriculture,2020,174:105503.
[27]ISLAM M N, IQBAL M Z, ALI M, et al. Kinematic analysis of a clamp-type picking device for an automatic pepper transplanter[J]. Agriculture,2020,10(12):627.
[28]ZHANG N, ZHANG G Z, LIU H P, et al. Design of and experiment on open-and-close seedling pick-up manipulator with four fingers[J]. Agriculture,2022,12(11):1776.
[29]HOU Z L, LI Z G, FADIJI T, et al. Soft grasping mechanism of human fingers for tomato-picking bionic robots[J]. Computers and Electronics in Agriculture,2021,182:106010.
[30]李健,戴楚彦,王扬威,等. 面向草莓抓取的气动四叶片软体抓手研制[J]. 哈尔滨工业大学学报,2022,54(1):105-113.
[31]李健,戴楚彦,王扬威,等. 基于草莓轮廓曲线的单指软体采摘抓手设计与优化[J]. 浙江大学学报(工学版),2022,56(6):1088-1096,1134.
[32]贾江鸣,叶玉泽,程培林,等. 细长果蔬采摘软体气动抓手设计与参数优化[J]. 农业机械学报,2021,52(6):26-34.
[33]朱银龙,赵虎,苏海军,等. 四指软体机械手机械特性分析与抓取试验[J]. 农业机械学报,2022,53(9):434-442.
[34]赵云伟,耿德旭,刘晓敏,等. 气动柔性果蔬采摘机械手运动学分析与实验[J]. 农业机械学报,2019,50(8):31-42.
[35]李三平,孙腾佳,袁龙强,等. 气动软体采摘机械手设计及实验研究[J]. 工程设计学报,2022,29(6):684-694.
[36]XIAO X, WANG Y N, JIANG Y M. End-effectors developed for Citrus and other spherical crops[J]. Applied Sciences,2022,12(15):7945.
[37]YU Z J, YUAN J J, GUO D Z, et al. Underactuated picking gripper for grasping and cutting Citrus[C]//IEEE. 2021 IEEE international conference on robotics and biomimetics (ROBIO). New Jersey: IEEE Computer Society,2021:1935-1940.
[38]陈子文,杨明金,李云伍,等. 基于气动无损夹持控制的番茄采摘末端执行器设计与试验[J]. 农业工程学报,2021,37(2):27-35.
[39]RONG J C, FU J, ZHANG Z Q, et al. Development and evaluation of a watermelon-harvesting robot prototype:vision system and end-effector[J]. Agronomy,2022,12(11): 2836.
[40]郑太雄,江明哲,冯明驰. 基于视觉的采摘机器人目标识别与定位方法研究综述[J]. 仪器仪表学报,2021,42(9):28-51.
[41]苟园旻,闫建伟,张富贵,等. 水果采摘机器人视觉系统与机械手研究进展[J]. 计算机工程与应用,2023,59(9):13-26.
[42]MONTOYA-CAVERO L E, DAZ DE LEN TORRES R, GMEZ-ESPINOSA A, et al. Vision systems for harvesting robots:produce detection and localization[J]. Computers and Electronics in Agriculture,2022,192:106562.
[43]CHENG C, FU J, SU H, et al. Recent advancements in agriculture robots:benefits and challenges[J]. Machines,2023,11(1):48.
[44]ZHAO Y S, GONG L, HUANG Y X, et al. A review of key techniques of vision-based control for harvesting robot[J]. Computers and Electronics in Agriculture,2016,127(C):311-323.
[45]YIN H P, CHAI Y, YANG S X, et al. Ripe tomato recognition and localization for a tomato harvesting robotic system[C]//IEEE. 2009 international conference of soft computing and pattern recognition. New Jersey: IEEE Computer Society,2009:557-562.
[46]LINKER R, COHEN O, NAOR A. Determination of the number of green apples in RGB images recorded in orchards[J]. Computers and Electronics in Agriculture,2012,81:45-57.
[47]梁喜凤,章鑫宇,王永维. 基于改进Mask R-CNN的番茄侧枝修剪点识别方法[J]. 农业工程学报,2022,38(23):112-121.
[48]余贤海,孔德义,谢晓轩,等. 基于深度学习的番茄授粉机器人目标识别与检测[J]. 农业工程学报,2022,38(24):129-137.
[49]杨坚,钱振,张燕军,等. 采用改进YOLOv4-tiny的复杂环境下番茄实时识别[J]. 农业工程学报,2022,38(9):215-221.
[50]GONG X L, ZHANG S J. A high-precision detection method of apple leaf diseases using improved faster R-CNN[J]. Agriculture,2023,13(2):240.
[51]XU Z B, HUANG X P, HUANG Y,et al. A real-time Zanthoxylum target detection method for an intelligent picking robot under a complex background,based on an improved YOLOv5s architecture[J]. Sensors,2022,22(2):682.
[52]NING Z T, LUO L F, DING X M, et al. Recognition of sweet peppers and planning the robotic picking sequence in high-density orchards[J]. Computers and Electronics in Agriculture,2022,196:106878.
[53]王金鹏,周佳良,张跃跃,等. 基于优选YOLOv7模型的采摘机器人多姿态火龙果检测系统[J]. 农业工程学报,2023,39(8):276-283.
[54]龙洁花,赵春江,林森,等. 改进Mask R-CNN的温室环境下不同成熟度番茄果实分割方法[J]. 农业工程学报,2021,37(18):100-108.
[55]熊俊涛,韩咏林,王潇,等. 基于YOLO v5-Lite的自然环境木瓜成熟度检测方法[J]. 农业机械学报,2023,54(6):243-252.
[56]徐天成,吴敏,贺冬仙,等. 机器视觉在农业工程中的应用[J]. 农业工程,2021,11(8):40-48.
[57]JOFFE B P, USHER C T. Autonomous robotic system for picking up floor eggs in poultry houses[C/OL]//AMERICAN SOCIETY OF AGRICULTURAL AND BIOLOGICAL ENGINEERS. 2017 ASABE annual international meeting. St. Joseph, Michigan, USA: American Society of Agricultural and Biological Engineers,2017. DOI:10.13031/aim.201700397.
[58]YU T, HU C H, XIE Y N, et al. Mature pomegranate fruit detection and location combining improved F-PointNet with 3D point cloud clustering in orchard[J]. Computers and Electronics in Agriculture,2022,200:107233.
[59]ZHANG F, GAO J, ZHOU H, et al. Three-dimensional pose detection method based on keypoints detection network for tomato bunch[J]. Computers and Electronics in Agriculture,2022,195:106824.
[60]金玉成,高杨,刘继展,等. 采摘机器人深度视觉伺服手-眼协调规划研究[J]. 农业机械学报,2021,52(6):18-25,42.
[61]张勤,陈建敏,李彬,等. 基于RGB-D信息融合和目标检测的番茄串采摘点识别定位方法[J]. 农业工程学报,2021,37(18):143-152.
[62]LI Y T, WU S K, HE L Y, et al. Development and field evaluation of a robotic harvesting system for plucking high-quality tea[J]. Computers and Electronics in Agriculture,2023,206:107659.
[63]BU L X, CHEN C K, HU G R, et al. Design and evaluation of a robotic apple harvester using optimized picking patterns[J]. Computers and Electronics in Agriculture,2022,198:107092.
[64]TSOULIAS N, PARAFOROS D S, XANTHOPOULOS G, et al. Apple shape detection based on geometric and radiometric features using a LiDAR laser scanner[J]. Remote Sensing,2020,12(15):2481.
[65]LIN G C, TANG Y C, ZOU X J, et al. In-field citrus detection and localisation based on RGB-D image analysis[J]. Biosystems Engineering,2019,186:34-44.
[66]ZHANG L, ZHU X H, HUANG J J, et al. BDS/IMU integrated auto-navigation system of orchard spraying robot[J]. Applied Sciences,2022,12(16):8173.
[67]DAHIYA R S, CATTIN D, ADAMI A, et al. Towards tactile sensing system on chip for robotic applications[J]. IEEE Sensors Journal,2011,11(12):3216-3226.
[68]VROCHIDOU E, TSAKALIDOU V N, KALATHAS I, et al. An overview of end effectors in agricultural robotic harvesting systems[J]. Agriculture,2022,12(8):1240.
[69]VU Q, RONZHIN A. A model of four-finger gripper with a built-in vacuum suction nozzle for harvesting tomatoes[M]//RONZHIN A, SHISHLAKOV V. Proceedings of 14th international conference on electromechanics and robotics Zavalishin’s Readings. Singapore:Springer Singapore,2019:149-160.
[70]XIE D B, CHEN L, LIU L C, et al. Actuators and sensors for application in agricultural robots:a review[J]. Machines,2022,10(10):913.
[71]CHEN J Q, QIANG H, WU J H, et al. Navigation path extraction for greenhouse cucumber-picking robots using the prediction-point Hough transform[J]. Computers and Electronics in Agriculture,2021,180:105911.
[72]ZHANG C L, YONG L Y, CHEN Y, et al. A rubber-tapping robot forest navigation and information collection system based on 2D LiDAR and a gyroscope[J]. Sensors,2019,19(9):2136.
[73]KOIVUMKI J, ZHU W H, MATTILA J. Energy-efficient and high-precision control of hydraulic robots[J]. Control Engineering Practice,2019,85:176-193.
[74]LI J X, LI S J, ZHANG Y L, et al. Development and test of hydraulic driven remote transporter[J]. International Journal of Agricultural and Biological Engineering,2021,14(2):72-80.
[75]ROSHANIANFARD A, NOGUCHI N, KAMATA T. Design and performance of a robotic arm for farm use[J]. International Journal of Agricultural and Biological Engineering,2019,12(1):146-158.
[76]MATA AMRITANANDAMAYI DEVI, UDUPA G, SREEDHARAN P. A novel underactuated multi-fingered soft robotic hand for prosthetic application[J]. Robotics and Autonomous Systems,2018,100:267-277.
[77]龙樟,李显涛,帅涛,等. 工业机器人轨迹规划研究现状综述[J]. 机械科学与技术,2021,40(6):853-862.
[78]DU Y X, CHEN Y H. Time optimal trajectory planning algorithm for robotic manipulator based on locally chaotic particle swarm optimization[J]. Chinese Journal of Electronics,2022,31(5):906-914.
[79]BO B C, ZHANG S, LIU W, et al. Simulation of workspace and trajectory of a weeding mechanism[J]. Alexandria Engineering Journal,2022,61(2):1133-1143.
[80]CAO X M, YAN H S, HUANG Z Y, et al. A multi-objective particle swarm optimization for trajectory planning of fruit picking manipulator[J]. Agronomy,2021,11(11):2286.
[81]张晴晖,孔德肖,李俊萩,等. 基于逆运动学降维求解与YOLO-v4的果实采摘系统研究[J]. 农业机械学报,2021,52(9):15-23.
[82]WANG D, DONG Y X, LIAN J, et al. Adaptive end-effector pose control for tomato harvesting robots[J]. Journal of Field Robotics,2023,40(3):535-551.
[83]LI K, HUO Y J, LIU Y N, et al. Design of a lightweight robotic arm for kiwifruit pollination[J]. Computers and Electronics in Agriculture,2022,198:107114.
[84]ZHANG H, GE Y, SUN C, et al. Picking path planning method of dual rollers type safflower picking robot based on improved ant colony algorithm[J]. Processes,2022,10(6):1213.
[85]CAO X M, ZOU X J, JIA C Y, et al. RRT-based path planning for an intelligent litchi-picking manipulator[J]. Computers and Electronics in Agriculture,2019,156:105-118.
[86]YE L, DUAN J L, YANG Z, et al. Collision-free motion planning for the litchi-picking robot[J]. Computers and Electronics in Agriculture,2021,185:106151.
[87]HE Z, MA L, WANG Y C, et al. Double-arm cooperation and implementing for harvesting kiwifruit[J]. Agriculture,2022,12(11):1763.
[88]罗天洪,唐果,马翔宇,等. 高速公路绿篱修剪机器人手臂避障路径规划[J]. 工程科学学报,2019,41(1):134-142.
[89]LI J Y. A new trajectory planning method of 6-DOF apple picking manipulator[J]. Jordan Journal of Mechanical & Industrial Engineering,2022,16(5):777.
[90]ZAHID A, HE L, CHOI D D, et al. Collision free path planning of a robotic manipulator for pruning apple trees[C]//AMERICAN SOCIETY OF AGRICULTURAL AND BIOLOGICAL ENGINEERS. 2020 ASABE annual international virtual meeting. St. Joseph, Michigan, USA: American Society of Agricultural and Biological Engineers,2020. DOI:10.13031/aim.202000439.
[91]CHEN Y Y, FU Y X, ZHANG B, et al. Path planning of the fruit tree pruning manipulator based on improved RRT-Connect algorithm[J]. International Journal of Agricultural and Biological Engineering,2022,15(2):177-188.
[92]荀一,李道政,王勇,等. 基于VS-IRRT算法的采摘机械臂路径规划[J]. 农业机械学报,2023,54(2):129-138.
[93]JIA B C, YANG S Z, YU T. Research on three picking arm avoidance algorithms for Agaricus mushroom picking robot[C]//IEEE. 2020 IEEE international conference on advances in electrical engineering and computer applications(AEECA). New Jersey:IEEE Computer Society,2020:325-328.
[94]崔永杰,马利,何智,等.基于最优空间的猕猴桃双臂并行采摘平台设计与试验[J].农业机械学报,2022,53(8):132-143.

相似文献/References:

[1]郭自良,殷程凯,吴玄博,等.水果采摘机械手关键技术研究现状与展望[J].江苏农业学报,2024,(06):1142.[doi:doi:10.3969/j.issn.1000-4440.2024.06.021]
 GUO Ziliang,YIN Chengkai,WU Xuanbo,et al.Research status and prospect of key technologies of fruit picking manipulator[J].,2024,(02):1142.[doi:doi:10.3969/j.issn.1000-4440.2024.06.021]

备注/Memo

备注/Memo:
收稿日期:2024-06-14基金项目:国家自然科学基金面上项目(51876114)作者简介:赵煜(1982-),女,河南三门峡人,博士,讲师,主要从事渔业工程装备研究。(E-mail)y-zhao@shou.edu.cn通讯作者:李永国,(E-mail)yg-li@shou.edu.cn
更新日期/Last Update: 2025-03-27