[1]王新妤,张鸣慧,姚玲,等.基于非靶向代谢组学的绿豆芽代谢物差异分析[J].江苏农业学报,2025,(01):175-183.[doi:doi:10.3969/j.issn.1000-4440.2025.01.020]
 WANG Xinyu,ZHANG Minghui,YAO Ling,et al.Differential analysis of metabolites in mung bean sprouts based on non-targeted metabolomics[J].,2025,(01):175-183.[doi:doi:10.3969/j.issn.1000-4440.2025.01.020]
点击复制

基于非靶向代谢组学的绿豆芽代谢物差异分析()
分享到:

江苏农业学报[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2025年01期
页码:
175-183
栏目:
园艺
出版日期:
2025-01-31

文章信息/Info

Title:
Differential analysis of metabolites in mung bean sprouts based on non-targeted metabolomics
作者:
王新妤1张鸣慧1姚玲2张丁2张振鑫2申慧芳1郭锋2
(1.山西农业大学基础部,山西太谷030801;2.山西农业大学资源与环境学院,山西太谷030801)
Author(s):
WANG Xinyu1ZHANG Minghui1YAO Ling2ZHANG Ding2ZHANG Zhenxin2SHEN Huifang1GUO Feng2
(1.Department of Basic Sciences, Shanxi Agricultural University, Taigu 030801, China;2.College of Resources and Environment, Shanxi Agricultural University, Taigu 030801, China)
关键词:
绿豆芽非靶向代谢组学差异代谢物代谢途径
Keywords:
mung bean sproutsnon-targeted metabolomicsdifferential metabolitesmetabolic pathway
分类号:
S522
DOI:
doi:10.3969/j.issn.1000-4440.2025.01.020
文献标志码:
A
摘要:
为了比较不同品种绿豆芽的代谢物差异,利用非靶向代谢组学分析方法对晋绿豆2号豆芽和滩绿116豆芽的代谢物进行分析。结果表明,从2种豆芽中共检测出1 968种差异代谢物。根据重要性投影值(VIP)≥1和P<0.05的标准,共筛选得到差异显著的代谢物1 064种,占总差异代谢物的54.07%。这1 064种差异代谢物主要分布在丙烷、哌啶和吡啶类生物碱生物合成通路,氨基糖和核苷酸糖代谢通路、膦酸盐和次膦酸盐代谢通路,萜类主干生物合成通路,糖酵解/糖异生通路中。差异代谢物中,葫芦巴碱具有降血糖的作用,其代谢途径为烟酸和烟酰胺代谢途径,该代谢途径属于丙烷、哌啶和吡啶类生物碱生物合成通路,滩绿116豆芽中葫芦巴碱含量显著高于晋绿豆2号豆芽。本研究结果为绿豆芽用种质资源挖掘提供了理论依据。
Abstract:
In order to compare the metabolic differences of different varieties of mung bean sprouts, non-targeted metabolomics analysis was used to analyze the metabolites of Jinlü No.2 and Tanlü No.116. The results showed that 1 968 differential metabolites were detected in the two kinds of bean sprouts. According to the standard of variable importance in the projection (VIP)≥1 and P<0.05, a total of 1 064 significantly different metabolites were screened out, accounting for 54.07% of the total differential metabolites. These 1 064 differential metabolites were mainly distributed in the biosynthesis pathways of propane, piperidine and pyridine alkaloids, the metabolic pathways of aminosugars and nucleotide sugars, the metabolic pathways of phosphonates and phosphinates, the biosynthesis pathways of terpenoids, and the glycolysis/gluconeogenesis pathways. Among the differential metabolites, trigonelline had the hypoglycemic effect, its metabolic pathway was the nicotinic acid and nicotinamide metabolic pathway. This metabolic pathway belonged to propane, piperidine, and pyridine alkaloids. And the content of trigonelline in Tanlü No.116 bean sprouts was significantly higher than that in Jinlü No.2 bean sprouts. The results of this study provide a theoretical basis for the exploration of germplasm resources for mung bean sprouts.

参考文献/References:

[1]NAIR R M, YANG R Y, EASDOWN W J, et al. Biofortification of mungbean (Vigna radiata) as a whole food to enhance human health[J]. Journal of the Science of Food and Agriculture,2013,93(8):1805-1813.
[2]程须珍,王素华,王丽侠. 绿豆种质资源描述规范和数据标准[M]. 北京:中国农业出版社,2006.
[3]吴木兰. 明绿豆营养特性与产地溯源研究及其高蛋白绿豆脆饼开发[D]. 南昌:南昌大学,2023.
[4]贺微仙,王文真. 中国绿豆种质资源的营养品质鉴定初步研究[J]. 作物学报,1987,13(4):346-348.
[5]黄梦迪. 不同品种绿豆及其豆芽品质研究与评价[D]. 西安:西北农林科技大学,2021.
[6]EBERT A W, CHANG C H, YAN M R, et al. Nutritional composition of mungbean and soybean sprouts compared to their adult growth stage[J]. Food Chemistry,2017,237:15-22.
[7]GANESAN K, XU B J. A critical review on phytochemical profile and health promoting effects of mung bean (Vigna radiata)[J]. Food Science and Human Wellness,2018,7(1):11-33.
[8]HE C X, WANG K, XIA J, et al. Natural exosomes-like nanoparticles in mung bean sprouts possesses anti-diabetic effects via activation of PI3K/Akt/GLUT4/GSK-3β signaling pathway[J]. Journal of Nanobiotechnology,2023,21(1):349.
[9]TANG D Y, DONG Y M, GUO N, et al. Metabolomic analysis of the polyphenols in germinating mung beans (Vigna radiata) seeds and sprouts[J]. Journal of the Science of Food and Agriculture,2014,94(8):1639-1647.
[10]ALI-REZA A S M, NASRIN M S, HOSSEN M A, et al. Mechanistic insight into immunomodulatory effects of food-functioned plant secondary metabolites[J]. Critical Reviews in Food Science and Nutrition,2023,63(22):5546-5576.
[11]XUE Z H, WANG C, ZHAI L J, et al. Bioactive compounds and antioxidant activity of mung bean (Vigna radiata L.),soybean (Glycine max L.) and black bean (Phaseolus vulgaris L.) during the germination process[J]. Czech Journal of Food Sciences,2016,34(1):68-78.
[12]SEHRAWAT N, YADAV M, KUMAR S, et al. Mung bean as a potent emerging functional food having anticancer therapeutic potential:mechanistic insight and recent updates[J]. Biotechnology and Applied Biochemistry,2023,70(6):2002-2016.
[13]GAN R Y, LUI W Y, WU K, et al. Bioactive compounds and bioactivities of germinated edible seeds and sprouts:An updated review[J]. Trends in Food Science & Technology,2017,59:1-14.
[14]RINSCHEN M M, IVANISEVIC J, GIERA M, et al. Identification of bioactive metabolites using activity metabolomics[J]. Nature Reviews Molecular Cell Biology,2019,20:353-367.
[15]MUTHUBHARATHI B C, GOWRIPRIYA T, BALAMURUGAN K. Metabolomics:small molecules that matter more [J]. Molecular Omics,2021,17(2):210-229.
[16]COLLINO S, MARTIN F P J, KOCHHAR S, et al. Nutritional metabonomics:an approach to promote personalized health a nd wellness[J]. CHIMIA International Journal for Chemistry,2011,65(6):396-399.
[17]方贤胜,吴涛,肖良俊. 基于广泛靶向代谢组学的浅黄色和紫色核桃内种皮成分差异分析[J]. 食品科学,2021,42(12):215-221.
[18]KIM B C, LIM I, HA J. Metabolic profiling and expression analysis of key genetic factors in the biosynthetic pathways of antioxidant metabolites in mungbean sprouts[J]. Frontiers in Plant Science,2023,14:1207940.
[19]DUNN W B, BROADHURST D, BEGLEY P, et al. Procedures for large-scale metabolic profiling of serum and plasma using gas chromatography and liquid chromatography coupled to mass spectrometry[J]. Nature Protocols,2011,6(7):1060-1083.
[20]唐佳代,冉光耀,陈诺,等. 基于非靶向代谢组学分析不同陈化时间老鹰茶代谢产物的差异[J]. 中国酿造,2023,42(9):115-119.
[21]李亚娇,马培杰,龙忠富,等. 低磷与干旱胁迫下百脉根代谢组学分析[J]. 草地学报,2022,30(2):329-338.
[22]刘振,成杨,赵洋,等. 基于代谢组学的湖南典型地方茶树种质资源代谢物差异研究[J]. 核农学报,2022,36(1):83-93.
[23]张丽媛,于英博,赵子莹,等. 不同品种绿豆中代谢产物的分离鉴定及代谢机制分析[J]. 食品科学,2021,42(16):169-175.
[24]NA-JOM K, FRANK T, ENGEL K H. A metabolite profiling approach to follow the sprouting process of mung beans (Vigna radiata)[J]. Metabolomics,2011,7(1):102-117.
[25]LIANG Y D, DAI X L, CAO Y, et al. The neuroprotective and antidiabetic effects of trigonelline:a review of signaling pathways and molecular mechanisms[J]. Biochimie,2023,206:93-104.
[26]CHOI M, MUKHERJEE S, YUN J W. Trigonelline induces browning in 3T3-L1 white adipocytes[J]. Phytotherapy Research,2021,35(2):1113-1124.
[27]QIU Z G, WANG K F, JIANG C, et al. Trigonelline protects hippocampal neurons from oxygen-glucose deprivation-induced injury through activating the PI3K/Akt pathway[J]. Chemico-Biological Interactions,2020,317:108946.
[28]FAIZAN M, JAHAN I, ISHAQ M, et al. Neuroprotective effects of trigonelline in kainic acid-induced epilepsy:behavioral,biochemical,and functional insights[J]. Saudi Pharmaceutical Journal,2023,31(12):101843.
[29]GONG M M, GUO Y J, DONG H, et al. Trigonelline inhibits tubular epithelial-mesenchymal transformation in diabetic kidney disease via targeting Smad7[J]. Biomedicine & Pharmacotherapy,2023,168:115747.
[30]么杨. 绿豆降血糖活性研究[D]. 北京:中国农业科学院,2009.
[31]YANG Q Q, GE Y Y, GUNARATNE A, et al. Phenolic profiles,antioxidant activities,and antiproliferative activities of different mung bean (Vigna radiata) varieties from Sri Lanka[J]. Food Bioscience,2020,37:100705.
[32]KARTIKEYAN A, VASUDEVAN V, PETER A J, et al. Effect of incubation period on the glycosylated protein content in germinated and ungerminated seeds of mung bean [Vigna radiata (L.) Wilczek][J]. International Journal of Biological Macromolecules,2022,217:633-651.
[33]SEHRAWAT N, YADAV M, KUMAR S, et al. Review on health promoting biological activities of mungbean:a potent functional food of medicinal importance[J]. Plant Archives,2020,20:2969-2975.
[34]YANG J, XIE D M, MA X F. Recent advances in chemical synthesis of amino sugars[J]. Molecules,2023,28(12):4724.
[35]TANG D Y, DONG Y M, REN H K, et al. A review of phytochemistry,metabolite changes,and medicinal uses of the common food mung bean and its sprouts (Vigna radiata)[J]. Chemistry Central Journal,2014,8(1):4.
[36]PEACOCK M. Phosphate metabolism in health and disease[J]. Calcified Tissue International,2021,108(1):3-15.
[37]WANG K X, YUAN Y H, LUO X Y, et al. Effects of exogenous selenium application on nutritional quality and metabolomic characteristics of mung bean (Vigna radiata L.)[J]. Frontiers in Plant Science,2022,13:961447.

备注/Memo

备注/Memo:
收稿日期:2024-01-25基金项目:山西省重点研发计划项目(201803D221020-3)作者简介:王新妤(1999-),女,河北张家口人,硕士研究生,主要从事杂粮优质种质资源的诱发突变及新品种选育工作。(E-mail)15832353192@163.com通讯作者:申慧芳,(E-mail)sxndshf@163.com
更新日期/Last Update: 2025-02-28