参考文献/References:
[1]FAYAZ S, PARAH S A, QURESHI G J, et al. Underwater object detection:architectures and algorithms-a comprehensive review[J]. Multimedia Tools and Applications,2022,81(1):20871-20916.
[2]许裕良,杜江辉,雷泽宇,等. 水下机器人在渔业中的应用现状与关键技术综述[J]. 机器人,2023,45(1):110-128.
[3]XU S B, ZHANG M H, SONG W, et al. A systematic review and analysis of deep learning-based underwater object detection[J]. Neurocomputing,2023,527:204-232.
[4]REN S Q, HE K M, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2017,39(6):1137-1149.
[5]袁红春,张硕. 基于Faster R-CNN和图像增强的水下鱼类目标检测方法[J]. 大连海洋大学学报,2020,35(4):612-619.
[6]LIU J, LIU S, XU S J, et al. Two-stage underwater object detection network using swin transformer[J]. IEEE Access,2022,10:117235-117247.
[7]LIN W H, ZHONG J X, LIU S, et al. Roimix: proposal-fusion among multiple images for underwater object detection[C]. Barcelona:ICASSP,2020.
[8]SHI P, XU X, NI J, et al. Underwater biological detection algorithm based on improved faster-RCNN[J]. Water,2021,13(17):2420.
[9]REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once:unified,real-time object detection[C]. Las Vegas:IEEE,2016.
[10]REDMON J, FARHADI A. YOLO9000:better,faster,stronger[C]. Honolulu:IEEE,2017.
[11]REDMON J, FARHADI A. Yolov3:an incremental improvement[C]. Salt Lake City:CVPR,2018.
[12]BOCHKOVSKIY A, WANG C Y, LIAO H Y M, et al. Yolov4:optimal speed and accuracy of object detection[C]. Seattle:CVPR,2020.
[13]GUO T, WEI Y, SHAO H, et al. Research on underwater target detection method based on improved MSRCP and YOLOv3[C]. Nashville:IEEE,2021.
[14]CHEN L Y, ZHENG M C, DUAN S Q, et al. Underwater target recognition based on improved YOLOv4 neural network[J]. Electronics,2021,10(14):1634.
[15]LEI F, TANG F, LI S. Underwater target detection algorithm based on improved YOLOv5[J]. Journal of Marine Science and Engineering,2022,10(3):310.
[16]翟先一,魏鸿磊,韩美奇,等. 基于改进YOLO卷积神经网络的水下海参检测[J]. 江苏农业学报,2023,39(7):1543-1553.
[17]SUN Y, ZHENG W X, DU X, et al. Underwater small target detection based on YOLOX combined with mobileViT and double coordinate attention[J]. Journal of Marine Science and Engineering,2023,11(6):1178.
[18]YI W G, WANG B. Research on underwater small target detection algorithm based on improved YOLOv7[J]. IEEE Access,2023,11:66818-66827.
[19]ZHU L, WANG X, KE Z, et al. BiFormer:vision transformer with Bi-level routing attention[C]. Vancouver:IEEE,2023.
[20]REN S, ZHOU D, HE S, et al. Shunted self-attention via multi-scale token aggregation[C]. New Orleans:IEEE,2022.
[21]ZHENG Z, WANG P, LIU W, et al. Distance-IoU loss:faster and better learning for bounding box regression[C]. New York:AAAI,2020.
[22]XU C, WANG J W, YANG W, et al. Detecting tiny objects in aerial images:a normalized Wasserstein distance and a new benchmark[J]. ISPRS Journal of Photogrammetry and Remote Sensing,2022,190:79-93.
[23]ARJOVSKY M, CHINTALA S, BOTTOU L. Wasserstein generative adversarial networks[C]. Sydney:ICML,2017.
[24]WANG D D, HE D J. Channel pruned YOLO V5s-based deep learning approach for rapid and accurate apple fruitlet detection before fruit thinning[J]. Biosystems Engineering,2021,210:271-281.
[25]HE Q, XU A, YE Z, et al. Object detection based on lightweight YOLOX for autonomous driving[J]. Sensors,2023,23(17):7596.
[26]LI Y H, MAO H Z, GIRSHICK R, et al. Exploring plain vision transformer backbones for object detection[C]. Tel Aviv:ECCV,2022.
[27]WANG C Y, BOCHKOVSKIY A, LIAO H Y M. YOLOv7:trainable bag-of-freebies sets new state-of-the-art for real-time object detectors[C]. Vancouver:IEEE,2023.