参考文献/References:
[1]国家统计局. 国家统计局关于2023年粮食产量数据的公告[EB/OL]. (2023-12-11). https://www.stats.gov.cn/sj/zxfb/202312/t20231211_1945417.html.
[2]黄承伟. 新征程上乡村振兴前沿问题研究[J]. 华中农业大学学报(社会科学版),2023(5):1-10.
[3]刘立军,周沈琪,刘昆,等. 水稻大穗形成及其调控的研究进展[J]. 作物学报,2023,49(3):12.
[4]ZHEN F, ZHOU J, MAHMOOD A, et al. Quantifying the effects of short-termheat stress at booting stage on nonstructural carbohydrates remobilization in rice[J]. The Crop Journal,2020,8(2):194-212.
[5]王亚梁,张玉屏,曾研华,等. 水稻穗分化期高温对颖花分化及退化的影响[J]. 中国农业气象,2015,36(6):724-731.
[6]李刚华,王惠芝,王绍华,等. 穗肥对水稻穗分化期碳氮代谢及颖花数的影响[J]. 南京农业大学学报,2010,33(1):1-5.
[7]文廷刚,王伟中,杨文飞,等. 水稻穗分化期外源植物生长调节剂处理对颖花分化与退化的影响[J]. 江苏农业学报,2019,35(3):514-522.
[8]MALLAREDDY M, THIRUMALAIKUMAR R, BALASUBRAMANIAN P,et al. Maximizing water use efficiency in rice farming:a comprehensive review of innovative irrigation management technologies[J]. Water,2023,15(10):1802.
[9]肖大康,胡仁,韩天富,等. 氮肥用量和运筹对我国水稻产量及其构成因子影响的整合分析[J]. 中国水稻科学,2023,37(5):529-542.
[10]张文地,董明辉,李扬,等. 施氮量对水稻非结构性碳水化合物积累分配与颖花形成的影响[J]. 扬州大学学报(农业与生命科学版),2023,44(1):29-39.
[11]陈毅敏,张建红,李世东,等. 浅析部分杂交水稻品种颖花退化的原因与对策[J]. 种子科技,2021,39(2):137-138.
[12]LIU H, GUO S, XU Y, et al. OsmiR396d-regulated OsGRFs function in floral organogenesis in rice through binding to their targets OsJMJ706 and OsCR4[J]. Plant Physiology,2014,165(1):160-174.
[13]陈小荣,钟蕾,贺晓鹏,等. 稻穗枝梗和颖花形成的基因型及播期效应分析[J]. 中国水稻科学,2006,20(4):424-428.
[14]ITOH J, NONOMURA K, IKEDA K, et al. Rice plant development:from zygoteto spikelet[J]. Plant and Cell Physiology,2005,46(1):23-47.
[15]丁颖,李乃铭,徐雪宾. 水稻幼穗发育和谷粒充实过程的观察[J]. 农业学报,1959,10(2):59-85.
[16]松岛省三. 稻作的理论与技术[M]. 庞诚,译. 北京:农业出版社,1966.
[17]凌启鸿,张洪程,苏祖芳,等. 稻作新理论水稻叶龄模式[M]. 北京:科学出版社,1994.
[18]KPPEL S, RMPLER F, THEIBEN G. Cracking the floral quartet code:How do multimers of MIKCC-type MADS-domain transcription factors recognize their target genes?[J]. International Journal of Molecular Sciences,2023,24(9):8253.
[19]KAUFMANN K, MELZER R, THEIEN G N. MIKC-type MADS-domain proteins:structural modularity,protein interactions and network evolution in land plants[J]. Gene,2005,347(2):183-198.
[20]GRIMPLET J, MARTíNEZ Z J M, CARMONA M J. Structural and functional annotation of the MADS-box transcription factor family in grapevine[J]. BMC Genomics,2016,17(1):80.
[21]AGRAWAL G K, ABE K, YAMAZAKI M, et al. Conservation of the E-function for floral organ identity in rice revealed by the analysis of tissue culture-induced loss-of-function mutants of the OsMADS1 gene[J]. Plant Molecular Biology,2005,59:125-135.
[22]MOON Y H, JUNG J Y, KANG H G, et al. Identification of a rice APETALA3 homologue by yeast two-hybrid screening[J]. Plant Molecular Biology,1999,40:167-177.
[23]NAGASAWA N, MIYOSHI M, SANO Y, et al. SUPERWOMAN1 and DROOPING LEAF genes control floral organ identity in rice[J]. Development,2003,130(4):705-718.
[24]WU H M, XIE D J, TANG Z S, et al. PINOID regulates floral organ development by modulating auxin transport and interacts with MADS16 in rice[J]. Plant Biotechnology Journal,2020,18(8):1778-1795.
[25]YUTAKA M, JUNKO K. Characterization of OsPID,the rice ortholog of PINOID,and its possible involvement in the control of polar auxin transport[J]. Plant and Cell Physiology,2007,48(3):540-549.
[26]KONG L, DUAN Y, YE Y, et al. Screening and analysis of proteins interacting with OsMADS16 in rice(Oryza sativa L.)[J]. PLoS One,2019,14(8):e0221473.
[27]YAO S G, OHMORI S, KIMIZU M, et al. Unequal genetic redundancy of rice PISTILLATA orthologs, OsMADS2 and OsMADS4, in lodicule and stamen development[J]. Plant and Cell Physiology,2008,49(5):853-857.
[28]星川清亲. 解剖图说稻的生长[M]. 蒋彭炎,许德海译. 上海:上海科学技术出版社,1980.
[29]戚华雄,杜雪树,李进波. 水稻颖花退化的遗传研究进展[J]. 湖北农业科学,2014,53(24):5905-5907.
[30]盛家艳,张伟杨,王志琴,等. 水稻颖花退化机理与调控途径[J]. 作物杂志,2019(2):20-27.
[31]徐鹏,贺一哲,尤翠翠,等. 高温胁迫导致水稻颖花败育的机理及其防御措施研究进展[J]. 江苏农业学报,2023,39(1):255-265.
[32]顾文亮,高山,张红叶,等. 响水县粳稻穗基部枝梗颖花退化的主要原因及预防措施[J]. 农业科技通讯,2013(3):152-154.
[33]姜辉,姜树坤,陈丽丽,等. 水稻顶端颖花退化的形态与发育学研究[J]. 黑龙江农业科学,2016(1):7-10.
[34]衡月芹. 水稻穗顶部颖花退化基因PAA1的图位克隆与功能分析[D]. 北京:中国农业科学院,2019.
[35]尤娟. 水稻每穗颖花数的形成与氮素穗肥的调控机理[D]. 南京:南京农业大学,2011.
[36]曲世勇, 郭丽娜. 水稻各生育期需水规律及水分管理技术[J]. 吉林农业,2012(2):100.
[37]李强强. 水分调控措施对水稻碳水化合物积累转运及籽粒灌浆的影响[D]. 扬州:扬州大学, 2020.
[38]解嘉鑫,熊若愚,陈丽明,等. 不同灌溉方式对优质晚籼稻颖花分化与退化和产量的影响[J]. 江西农业大学学报,2021,43(2):235-243.
[39]ANITHA K M P R. Alternate wetting and drying:irrigation technology in rice[J]. Indian Farming,2020,70(4):6-9.
[40]成大宇,刘昆,高捷,等. 养分和水分管理对稻米香味影响的研究进展[J]. 作物杂志,2022(2):22-27.
[41]JU C, BURESH R J, WANG Z, et al. Root and shoot traits for rice varieties with higher grain yield and higher nitrogen use efficiency at lower nitrogen rates application[J]. Field Crops Research,2015,175:47-55.
[42]宋有金,吴超. 高温影响水稻颖花育性的生理机制综述[J]. 江苏农业科学,2020,48(16):41-48.
[43]李婷婷,冯钰枫,朱安,等. 主要节水灌溉方式对水稻根系形态生理的影响[J]. 中国水稻科学,2019,33(4):293-302.
[44]刘昆. 不同穗型水稻品种颖花分化与退化机制及其调控[D]. 扬州:扬州大学,2023.
[45]汪本福. 干旱胁迫对不同抗旱类型水稻光合特性的影响及其生理机制[D]. 武汉:华中农业大学,2019.
[46]张伟杨. 水分和氮素对水稻颖花发育与籽粒灌浆的调控机制[D]. 扬州:扬州大学,2018.
[47]NGUYEN G N, HAILSTONES D L, WILKES M, et al. Drought stress:role of carbohydrate metabolism in drought-induced male sterility in rice anthers[J]. Journal of Agronomy and Crop Science,2010,196(5):346-357.
[48]BHARGAVA S, SAWANT K. Drought stress adaptation:metabolic adjustment and regulation of gene expression[J]. Plant Breeding,2012,132(1):21-32.
[49]董明辉,江贻,陈培峰,等. 非结构性碳水化合物与水稻颖花形成关系的研究进展[J]. 农学学报,2020,10(10):1-6.
[50]杨建昌,刘凯,张慎凤,等. 水稻减数分裂期颖花中激素对水分胁迫的响应[J]. 作物学报,2008,34(1):111-118.
[51]种浩天,尚程,张运波,等. 增密减氮对不同类型水稻品种颖花形成的影响[J]. 作物杂志,2022,38(6):226-233.
[52]张文地. 水氮调控对水稻非结构性碳水化合物积累转运与颖花形成的影响[D]. 扬州:扬州大学,2023.
[53]WANG Z Q, ZHANG W Y, YANG J C. Physiological mechanism underlying spikelet degeneration in rice[J]. Journal of Integrative Agriculture,2018,17(7):1475-1481.
[54]孙永健,孙园园,严奉君,等. 氮肥后移对不同氮效率水稻花后碳氮代谢的影响[J]. 作物学报,2017,43(3):407-419.
[55]张蕊. 氮素穗肥对水稻不同时间开花颖花灌浆充实的影响[D]. 南京:南京农业大学,2014.
[56]王夏雯,王绍华,李刚华,等. 氮素穗肥对水稻幼穗细胞分裂素和生长素浓度的影响及其与颖花发育的关系[J]. 作物学报,2008,34(12):2184-2189.
[57]王夏雯. 氮素穗肥和NO对水稻幼穗发育及其内源激素的影响[D]. 南京:南京农业大学,2008.
[58]吕腾飞,周伟,孙永健,等. 不同秧龄下氮肥运筹对杂交稻枝梗和颖花分化及退化的影响[J]. 四川农业大学学报,2014,32(1):10.
[59]李玲锋,孙晓棠,欧阳林娟,等. 水稻小穗退化的影响因素及遗传研究进展[J]. 核农学报,2018,32(2):291-296.
[60]陈惠哲,朱德峰,林贤青,等. 穗肥施氮量对两优培九枝梗及颖花分化和退化的影响[J]. 浙江农业学报,2008,20(3):181-185.
[61]杨洪建,杨连新,黄建晔,等. FACE对武香粳14颖花分化和退化的影响[J]. 作物学报,2006,32(7):1076-1082.
[62]龙泓锦,王辉,欧阳赞,等. 水稻品质及产量对灌浆期旱涝急转的响应[J]. 排灌机械工程学报,2024,42(9):938-947.
[63]王拓,李秋平,周文玲,等. 田间不同淹水深度对耐低氧水稻和杂草生长的影响[J]. 江苏农业科学,2023,51(3):111-117.
[64]李圆圆,何平,茅桁. 稻田水肥管理研究进展及思考[J]. 排灌机械工程学报,2023,41(8):825-832.
[65]邓海龙,谢亨旺,付桃秀,等. 水稻生育期智能间歇灌溉系统研发及应用[J]. 排灌机械工程学报,2023,41(8):842-848,864.
[66]李国齐,吴汉. 免耕与秸秆还田对直播稻产量及水分利用的影响[J]. 排灌机械工程学报,2022,40(9):945-951
[67]梁友,王津,王思进,等. 稻田环境因子对水稻生长发育和产量、品质形成的影响研究进展[J]. 江苏农业科学,2022,50(24):1-9.
[68]文宏达,刘玉柱,李晓丽,等. 水肥耦合与旱地农业持续发展[J]. 土壤与环境,2002(3):315-318.
[69]张露,梁青铎,吴龙龙,等. 减氮和增氧灌溉对水稻产量和氮素利用的影响[J]. 中国水稻科学,2023,37(1):78-88.
[70]徐云姬,许阳东,李银银,等. 干湿交替灌溉对水稻花后同化物转运和籽粒灌浆的影响[J]. 作物学报,2018,44(4):554-568.
[71]范雪梅,姜东,戴廷波,等. 花后干旱和渍水下氮素供应对小麦籽粒蛋白质和淀粉积聚关键调控酶活性的影响[J]. 中国农业科学,2005,38(6):1132-1141.
[72]段骅,佟卉,刘燕清,等. 高温和干旱对水稻的影响及其机制的研究进展[J]. 中国水稻科学,2019,33(3):206-218.
[73]ZHANG W, SHENG J, FU L, et al. Brassinosteroids mediate the effect of soil-drying during meiosis on spikelet degeneration in rice[J]. Environmental and Experimental Botany,2020,169:103887.
相似文献/References:
[1]王士磊,丁正权,黄海祥.水稻隐性早熟突变体ref早熟性的遗传分析和基因定位[J].江苏农业学报,2016,(04):721.[doi:10.3969/j.issn.100-4440.2016.04.001]
WANG Shi-lei,DING Zheng-quan,HUANG Hai-xiang.Inheritance and gene mapping of recessive earliness in rice (Oryza sativa L.)[J].,2016,(11):721.[doi:10.3969/j.issn.100-4440.2016.04.001]
[2]王在满,郑乐,张明华,等.不同播种方式对直播水稻倒伏指数和根系生长的影响[J].江苏农业学报,2016,(04):725.[doi:10.3969/j.issn.100-4440.2016.04.002]
WANG Zai-man,ZHENG Le,ZHANG Ming-hua,et al.Effects of seeding manners on lodging index and root growth of directseeded rice[J].,2016,(11):725.[doi:10.3969/j.issn.100-4440.2016.04.002]
[3]易能,薛延丰,石志琦,等.微囊藻毒素对水稻种子萌发和幼苗生长的胁迫作用[J].江苏农业学报,2016,(04):729.[doi:10.3969/j.issn.100-4440.2016.04.003]
YI Neng,XUE Yan-feng,SHI Zhi-qi,et al.Inhibitory effect of microcystins on seed germination and seedling growth of rice[J].,2016,(11):729.[doi:10.3969/j.issn.100-4440.2016.04.003]
[4]刘凯,王爱民,严国红,等.一个水稻显性矮秆突变体的遗传特性与降株高能力[J].江苏农业学报,2016,(05):968.[doi:10.3969/j.issn.1000-4440.2016.05.002]
LIU Kai,WANG Ai-min,YAN Guo-hong,et al.Genetic analysis and plant height reduction of a dominant dwarf mutant of rice[J].,2016,(11):968.[doi:10.3969/j.issn.1000-4440.2016.05.002]
[5]王红,杨镇,裴文琪,等.功能性微生物制剂对镉胁迫下水稻生长及生理特性的影响[J].江苏农业学报,2016,(05):974.[doi:10.3969/j.issn.1000-4440.2016.05.003]
WANG Hong,YANG Zhen,PEI Wen-qi,et al.Growth and physiological characteristics of cadmium-stressed rice influenced by functional microorganism agent[J].,2016,(11):974.[doi:10.3969/j.issn.1000-4440.2016.05.003]
[6]孙玲,单捷,毛良君,等.基于遥感和Moran's I指数的水稻面积变化空间自相关性研究[J].江苏农业学报,2016,(05):1060.[doi:10.3969/j.issn.1000-4440.2016.05.017]
SUN Ling,SHAN Jie,MAO Liang-jun,et al.Spatial autocorrelation of changes in paddy rice area based on remote sensing and Moran’s I index[J].,2016,(11):1060.[doi:10.3969/j.issn.1000-4440.2016.05.017]
[7]张晓忆,李卫国,景元书,等.多种光谱指标构建决策树的水稻种植面积提取[J].江苏农业学报,2016,(05):1060.[doi:10.3969/j.issn.1000-4440.2016.05.018]
ZHANG Xiao-yi,LI Wei-guo,JING Yuan-shu,et al.Extraction of paddy rice area by constructing the decision tree with multiple spectral indices[J].,2016,(11):1060.[doi:10.3969/j.issn.1000-4440.2016.05.018]
[8]裔传灯,李玮,王德荣,等.水稻GW5基因的1212-bp Indel变异对粒形的影响[J].江苏农业学报,2016,(06):1201.[doi:doi:10.3969/j.issn.1000-4440.2016.06.001]
YI Chuan-deng,LI Wei,WANG De-rong,et al.Effect of 1212-bp Indel variation of gene GW5 on rice grain shape[J].,2016,(11):1201.[doi:doi:10.3969/j.issn.1000-4440.2016.06.001]
[9]刘红江,陈虞雯,张岳芳,等.不同播栽方式对水稻叶片光合特性及产量的影响[J].江苏农业学报,2016,(06):1206.[doi:doi:10.3969/j.issn.1000-4440.2016.06.002]
LIU Hong-jiang,CHEN Yu-wen,ZHANG Yue-fang,et al.Effects of planting pattern on leaf photosynthetic characteristics and yield of rice[J].,2016,(11):1206.[doi:doi:10.3969/j.issn.1000-4440.2016.06.002]
[10]郭保卫,许轲,魏海燕,等.钵苗机插水稻茎秆的抗倒伏能力[J].江苏农业学报,2016,(06):1280.[doi:doi:10.3969/j.issn.1000-4440.2016.06.014]
GUO Bao-wei,XU Ke,WEI Hai-yan,et al.Culm lodging resistance characteristics of bowl seedling mechanical-transplanting rice[J].,2016,(11):1280.[doi:doi:10.3969/j.issn.1000-4440.2016.06.014]