[1]黄静,王文婷,张初署,等.磁性介孔沸石复合材料对花生样品中黄曲霉毒素B1的快速富集[J].江苏农业学报,2024,(11):2177-2186.[doi:doi:10.3969/j.issn.1000-4440.2024.11.021]
 HUANG Jing,WANG Wenting,ZHANG Chushu,et al.Rapid enrichment of magnetic mesoporous zeolite composites on aflatoxin B1 in peanut samples[J].,2024,(11):2177-2186.[doi:doi:10.3969/j.issn.1000-4440.2024.11.021]
点击复制

磁性介孔沸石复合材料对花生样品中黄曲霉毒素B1的快速富集()
分享到:

江苏农业学报[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2024年11期
页码:
2177-2186
栏目:
加工贮藏·质量安全
出版日期:
2024-11-30

文章信息/Info

Title:
Rapid enrichment of magnetic mesoporous zeolite composites on aflatoxin B1 in peanut samples
作者:
黄静1王文婷1张初署2周海翔2王冕2唐月异2朱立飞2张建成2
(1.辽宁工程技术大学,辽宁阜新123000;2.山东省花生研究所,山东青岛266000)
Author(s):
HUANG Jing1WANG Wenting1ZHANG Chushu2ZHOU Haixiang2WANG Mian2TANG Yueyi2ZHU Lifei2ZHANG Jiancheng2
(1.Liaoning Technical University, Fuxin 123000, China;2.Shandong Peanut Research Institute, Qingdao 266000, China)
关键词:
磁性固相萃取介孔沸石黄曲霉毒素花生
Keywords:
magnetic solid phase extractionmesoporous zeoliteaflatoxinpeanut
分类号:
TQ424
DOI:
doi:10.3969/j.issn.1000-4440.2024.11.021
文献标志码:
A
摘要:
本研究通过改性沸石介孔性能的方法制备新型吸附材料磁性介孔沸石,利用磁性分散固相萃取结合高效液相色谱法,建立了花生中黄曲霉毒素B1 (AFB1)的提取方法。通过场发射扫描电子显微镜、傅立叶变换红外光谱、比表面积和磁性分析技术分析材料理化性质。结果显示,磁性介孔沸石复合材料Fe3O4/zeolite-b杂质更少、孔洞更多、内径更大且孔道结构更加明显,并且孔径大小集中、平均孔径较大,具有超强磁性;将磁性介孔沸石材料作为吸附剂,通过优化萃取条件,结合高效液相色谱-荧光检测器检测花生样品中的AFB1。结果表明,当磁性介孔沸石的添加量为25 mg,pH为7,样品体积为1.0 mL,吸附时间为1 min,洗脱剂为乙腈,洗脱剂体积为3 mL,洗脱时间为3 min时,AFB1质量浓度为2.00~20.00 μg/L,目标物色谱峰面积与质量浓度有良好的线性关系,决定系数(R2)为0.976 8,方法检测限0.05 μg/L,定量限0.16 μg/L。3种不同加标质量浓度(2.00 μg/L、10.00 μg/L、20.00 μg/L)下,AFB1加标回收率范围为81.3%~92.6%,相对标准偏差为2.2%~3.4%。
Abstract:
In this study, a new adsorption material magnetic mesoporous zeolite was prepared by modifying the mesoporous properties of zeolite. The extraction method of aflatoxin B1 (AFB1) from peanut was established by magnetic dispersion solid phase extraction combined with high performance liquid chromatography. The physical and chemical properties of the materials were analyzed by field emission scanning electron microscopy (FE-SEM), Fourier transform infrared spectroscopy (FT-IR), Brunauer-Emmett-Teller (BET) and hysteresis loop (VSM). The results showed that Fe3O4/zeolite-b composite materials had less impurities, more holes, larger inner diameter and more obvious pore structure, and the pore size was concentrated, the average pore size was larger, which had super magnetic properties. The magnetic mesoporous zeolite material was used as adsorbent to detect AFB1 in peanut samples by optimizing extraction conditions and combining with high performance liquid chromatography-fluorescence detector (FD). The results showed that the mass concentration of AFB1 was 2.00-20.00 μg/L when the addition amount of magnetic mesoporous zeolite was 25 mg, the pH was seven, the sample volume was 1.0 mL, the extraction time was 1 min, the elution agent was acetonitrile, the elution volume was 3 mL, the adsorption time was 3 min, and the chromatographic peak area of the target object had a good linear relationship with the mass concentration. The coefficient of determination (R2) was 0.976 8, the detection limit was 0.05 μg/L, and the quantitation limit was 0.16 μg/L. Under three different mass concentrations (2.00 μg/L, 10.00 μg/L, 20.00 μg/L), the recoveries of AFB1 were 81.3%-92.6%, and the relative standard deviations were 2.2%-3.4%.

参考文献/References:

[1]KARAMI-OSBOO R, MAHAM M, MIRI R, et al. Pre-concentration and extraction of aflatoxins from rice using air-assisted dispersive liquid-liquid microextraction[J]. Food Analytical Methods,2018,11:2816-2821.
[2]GNES M, ZSUZSANNA F, KLARA H,et al. Overpressured layer chromatographic determination of aflatoxin B1, B2, G1 and G2 in red paprika[J]. Microchemical Journal,2007,85:140-144.
[3]KARAMI-OSBOO R, MIRABOLFATHY M, KAMRAN R, et al. Aflatoxin B1 in maize harvested over 3 years in Iran[J]. Food Control, 2012,23:271-274.
[4]HE J, ZHANG B, ZHANG H, et al. Monitoring of 49 pesticides and 17 mycotoxins in wine by QuEChERS and UHPLC-MS/MS analysis[J]. Journal of Food Science,2019,84:2688-2697.
[5]ESHAGHI Z H, SORAYAEI F, SAMAD, et al. Fabrication of a novel nanocomposite based on sol-gel process for hollow fiber-solid phase micro-extraction of aflatoxins: B1 and B2, in cereals combined with high performance liquid chromatography-diode array detection[J]. Journal of Chromatographic Science,2011,879:3034-3040.
[6]YUAN J, CHEN Z, GUO Z Q, et al. PbsB regulates morphogenesis, aflatoxin B1 biosynthesis, and patho-genicity of Aspergillus flavus[J]. Frontiers in Cellular and Infection Microbiology,2018,8:203-213.
[7]黄静,刘霄悦,张建成,等. 不同碳素纳米材料对黄曲霉毒素B1的吸附[J].江苏农业学报,2022,38(2):539-548.
[8]DENG H L, SU X G, WANG H B. Simultaneous determination of aflatoxin B1, bi-sphenol A, and 4-nonylphenol in peanut oils by liquid-liquid extraction combinedwith solid-phase and ultra-high performance liquid chromatography-tandem mass spectrometry[J]. Food Analytical Methods,2018,11:1303-1311.
[9]JI C,FAN Y, ZHAO L H. Review wonbioligical degradation of my cotoxins[J]. Animal Nutrition,2016,2:127-133.
[10]PIROUZA A, KARJBANR A, BANKAR F, et al. Anovelad-sorbentmagnetic grapheneoxide modified withchitosan for the simultaneous reduction of mycotoxins[J]. Toxins,2018,10:361.
[11]BAILE P, VIDAL L, AGUIRRE M , et al. A modified ZSM-5 zeolite/Fe2O3 com-posite as a sorbent for magnetic dispersive solid-phase microextraction of cadmium,mercury and lead from urine samples prior to inductively coupled plasma optical emission spectrometry[J]. Journal of Analytical Atomic Spectrometry,2018,33:856-866.
[12]FERNNDEZ E, VIDAL L, CANALS A. Zeolite/iron oxide composite as sorbent for magnetic solid-phase extraction of benzene, toluene, ethylbenzene and xylenes from water samples prior to gas chromatography mass spectrometry[J]. Journal of Chromatography,2016,1458:18-24.
[13]BAILE P, VIDAL L, CANALS A. A modified zeolite/iron oxide composite as a sorbent for magnetic dispersive solid-phase extraction for the preconcentration of non-steroidal anti-inflammatory drugs in water and urine samples[J]. Journal of Chromatography,2019,1603:33-43.
[14]GUGUSHE A S, MPUPA A, NOMNGONGO P N. Ultrasound-assisted magnetic solid phase extraction of lead and thallium in complex environmental samples using magnetic multi-walled carbon nanotubes/zeolite nanocomposite[J]. Microchemical Journal,2019,149:103960.
[15]FERNNDEZ E, VIDAL L, SILVESTRE-ALBERO J, et al. Magnetic dispersive solid-phase extraction using a zeolite-based composite for direct electrochemical de-termination of lead(Ⅱ) in urine using screen-printed electrodes[J]. Microchimica Acta,2020,187:87.
[16]BAILE P, FERNNDEZ E, VIDAL L, et al. Zeolites and zeolite-based materials in extraction and microextraction techniques[J]. Analyst,2019,144:366-387.
[17]TAO Y, JIANG Y H, LI W D, et al. Zeolite based solid-phase extraction coupled with UPLC-Q-TOF-MS for rapid analysis of acetylcholinesterase binders from crude extract of Corydalis yanhusuo[J]. Royal Society of Chemistry Advances,2016,6:98476-98486.
[18]NASROLLAHZADEH M, SAJADI S M, MAHAM M, et al. In situ green synthesis of Cu nanoparticles supported on natural Natrolite zeolite for the reduction of 4-ni-trophenol, congo red and methylene blue[J]. IET Nanobiotechnol,2016,11:538-545.
[19]EROGLU N, EMEKCI M, ATHANASSIOU C G. Applications of natural zeolites on agri-culture and food production[J]. Journal of the Science of Food and Agriculture,2017,97:3487-3499.
[20]SUBRAMANIAM M D, KIM I H. Clays as dietary supplements for swine:a review[J]. Journal of Animal Science and Biotechnology,2015,6:38.
[21]NASROLLAHZADEH M, SAJADI S M, MAHAM M, et al. In situ green synthesis of Cu nanoparticles supported on natural Natrolite zeolite for the reduction of 4-ni-trophenol, congo red and methylene blue[J]. IET Nanobiotechnol,2016,11:538-545.
[22]EROGLU N, EMEKCI M, ATHANASSIOU C G. Applications of natural zeolites on agri-culture and food production[J]. Journal of the Science of Food and Agriculture,2017,97:3487-3499.
[23]SUBRAMANIAM M D, KIM I H. Clays as dietary supplements for swine:a review[J]. Journal of Animal Science and Biotechnology,2015,6:38.
[24]NOURI N, SERESHTI H. Electrospun polymer composite nanofiber-based in syringes olid phase extraction in tandem with dispersive liquid-liquid microextraction coupled with HPLC-FD for determination of aflatoxins in soybean[J]. Food Chemistry,2019,289:33-39.
[25]YU L, MA F, DING X X, et al. Silica/graphene oxide nanocomposites:potential adsorbents for solid phase extraction of trace aflatoxins in cereal crops coupled with high performance liquid chromatography[J]. Food Chemistry,2019,245:1018-1024.
[26]ARROYO-MANZANARES N, HUERTAS-PEREZ J F, et al. A new approach in sample treatment combined with UHPLC-MS/MS for thedetermination of multiclass mycotoxins in edible nuts and seeds[J]. Talanta,2020,115:61-67.
[27]MALEKPOUR A, BAYATI S. Simultaneous determination of aflatoxins in pistachio using ultrasonically stabilized chloroform/water emulsion and HPLC[J]. Food Analytical Methods,2021,9(3):805-811.

备注/Memo

备注/Memo:
收稿日期:2024-10-24基金项目:山东省农业科学院农业科技创新工程项目(CXGC2023A39);山东省重点研发计划(乡村振兴科技创新)项目(2022TZXD0031);山东省自然科学基金面上项目(ZR2020MC103、ZR2021MC040)作者简介:黄静(1978-),女,辽宁沈阳人,博士,副教授,主要从事生物化学及复合材料的研究。(Tel)15841835211;(E-mail)15918893@qq.com通讯作者:张建成,(Tel)13863920622;(E-mail)jianc
更新日期/Last Update: 2025-01-20