[1]张青强,马佳佳,朱和权,等.基于代谢组学及网络药理学分析不同品种芡实中活性成分及其对人糖尿病的作用[J].江苏农业学报,2024,(11):2163-2176.[doi:doi:10.3969/j.issn.1000-4440.2024.11.020]
 ZHANG Qingqiang,MA Jiajia,ZHU Hequan,et al.Effects of active components in different varieties of Euryale ferox on human diabetes based on metabolomics and network pharmacology[J].,2024,(11):2163-2176.[doi:doi:10.3969/j.issn.1000-4440.2024.11.020]
点击复制

基于代谢组学及网络药理学分析不同品种芡实中活性成分及其对人糖尿病的作用()
分享到:

江苏农业学报[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2024年11期
页码:
2163-2176
栏目:
加工贮藏·质量安全
出版日期:
2024-11-30

文章信息/Info

Title:
Effects of active components in different varieties of Euryale ferox on human diabetes based on metabolomics and network pharmacology
作者:
张青强12马佳佳3朱和权2李勇4李红领5刘欢2蔡为荣1李春阳2
(1.安徽工程大学生物与食品工程学院,安徽芜湖241000;2.江苏省农业科学院农产品加工研究所,江苏南京210014;3.江苏太湖地区农业科学研究所,江苏苏州215000;4.江苏省农业科学院农业资源与环境研究所,江苏南京210014;5.南京工业大学食品与轻工学院,江苏南京211816)
Author(s):
ZHANG Qingqiang12MA Jiajia3ZHU Hequan2LI Yong4LI Hongling5LIU Huan2CAI Weirong1LI Chunyang2
(1.College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu 241000, China;2.Institute of Agroproduct Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China;3.Taihu Research Institute of Agricultural Sciences, Suzhou 215000, China;4.Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China;5.College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China)
关键词:
芡实糖尿病代谢组学网路药理学分子对接
Keywords:
Euryale feroxdiabetesmetabolomicsnetwork pharmacologymolecular docking
分类号:
R285;S645.9
DOI:
doi:10.3969/j.issn.1000-4440.2024.11.020
文献标志码:
A
摘要:
通过代谢组学、网络药理学及分子对接技术分析不同芡实品种中的活性成分及其对糖尿病的作用。使用四极杆飞行时间液质联用系统(LC-QTOF-MS)、Metaboanalyst(https://www.metaboanalyst.ca/)和TBtools软件对芡实成分进行检测和分析;通过PubChem筛选出芡实中具有生物活性的成分;使用Swiss预测芡实成分靶点,通过多种数据库检索疾病靶点取并集;绘制蛋白质互作(PPI)网络查找主要成分及核心靶点;对交集靶点进行GO富集分析和KEGG富集分析;最后通过分子对接技术进行验证。结果表明,苏芡和刺芡中有153种在含量方面具有显著差异的成分;从苏芡中筛选出12种具有缓解糖尿病及其并发症效果的成分以及578个潜在靶点,从刺芡中筛选出3种具有缓解糖尿病及其并发症效果的成分及226个潜在靶点;GO富集和KEGG富集分析结果显示,苏芡中的靶点主要富集在糖尿病性心肌病、胰岛素抵抗、糖尿病并发症中的高级糖基化终末产物-受体信号通路,刺芡中的靶点主要富集在癌症的发病途径、脂肪细胞脂解的调控、磷酸腺苷活化蛋白激酶信号通路;分子对接分析结果显示,筛选出的成分均结合在靶点蛋白质的凹陷处,结合自由能均为负值,分子对接构象稳定。说明,苏芡在缓解糖尿病及其并发症等方面较刺芡具有更好的效果。
Abstract:
This study aims to elucidate the active ingredient differences in Euryale ferox and the alleviation of diabetes among different varieties, known as South Euryale and North Euryale, using metabolomics, network pharmacology, and molecular docking techniques. Liquid chromatography-quadrupole time of flight-mass spectrometry (LC-QTOF-MS), Metaboanalyst(https://www.metaboanalyst.ca/), and TBtools were used for the detection and analysis of components in E. ferox. Bioactive components in E. ferox were screened through PubChem. Swiss was used to predict the targets of E. ferox components, and disease targets were searched from multiple databases and combined. Protein-protein interaction (PPI) networks were constructed to identify major components and core targets. GO analysis and KEGG analysis were conducted on the intersected targets. Finally, molecular docking models were used for validation. The results showed that 153 components with significant differences in the content were found between South Euryale and North Euryale. Twelve components with the potential to alleviate diabetes and its complications, along with 578 potential targets, were identified in South Euryale, while three components and 226 potential targets were identified in North Euryale. GO and KEGG enrichment analysis revealed that the targets in South Euryale were mainly enriched in the pathogenesis of diabetic cardiomyopathy, insulin resistance, and the advanced glycation end products-receptor of advanced glycation endproducts (AGE-RAGE) signaling pathway in diabetic complications, while the targets in North Euryale were primarily enriched in the pathogenesis of cancer, regulation of adipocyte lipolysis, and the adenosine 5’-monophosphate (AMP)-activated protein kinase (AMPK) signaling pathway. Molecular docking results showed that the screened components combined to the depressed sites of target proteins, with negative binding free energy and stable molecular docking conformations. It can be concluded that South Euryale exhibited better effects in alleviating diabetes and its complications compared to North Euryale.

参考文献/References:

[1]徐君,尹渝来,薛博文,等. 基于SSR标记的芡实遗传多样性分析及指纹图谱构建[J]. 中国蔬菜,2023(12):79-85.
[2]ONG K L, STAFFORD L K, MCLAUGHLIN S A, et al. Global,regional,and national burden of diabetes from 1990 to 2021,with projections of prevalence to 2050:a systematic analysis for the Global Burden of Disease Study 2021[J]. The Lancet,2023,402(10397):203-234.
[3]GONG Q H, ZHANG P, WANG J P, et al. Morbidity and mortality after lifestyle intervention for people with impaired glucose tolerance:30-year results of the Da Qing diabetes prevention outcome study[J]. The Lancet Diabetes & Endocrinology,2019,7(6):452-461.
[4]王盈蕴,吉红玉,朱向东. 芡实的临床应用及其用量探究[J]. 吉林中医药,2021,41(5):664-667.
[5]王华昆. 黄精芡实汤联合揿针疗法对轻型糖尿病患者的临床疗效分析[J]. 糖尿病新世界,2021,24(20):98-100,104.
[6]XU L, ZUO S M, LIU M, et al. Integrated analysis of metabolomics combined with network pharmacology and molecular docking reveals the effects of processing on metabolites of Dendrobium officinale[J]. Metabolites,2023,13(8):886.
[7]朱和权,李勇,李春阳,等. 基于代谢组学及网络药理学分析天麻熟制过程中生物学活性变化[J]. 食品工业科技,2023,44(3):29-39.
[8]MU Q E, ZHANG M X, LI Y, et al. Metabolomic analysis reveals the effect of insecticide chlorpyrifos on rice plant metabolism[J]. Metabolites,2022,12(12):1289.
[9]张丽,曾嘉程,王梦,等. 不同产地芡实的品质特性评价[J]. 食品工业科技,2019,40(11):70-78.
[10]LIN Y R, ZHENG F T, XIONG B J, et al. Koumine alleviates rheumatoid arthritis by regulating macrophage polarization[J]. Journal of Ethnopharmacology,2023,311:116474.
[11]LU J S, YANG L, CHEN J, et al. Basolateral amygdala astrocytes modulate diabetic neuropathic pain and may be a potential therapeutic target for koumine[J]. British Journal of Pharmacology,2023,180(10):1408-1428.
[12]YUAN Z H, YANG M R, LIANG Z, et al. PI3K/AKT/mTOR,NF-κB and ERS pathway participated in the attenuation of H2O2-induced IPEC-J2 cell injury by koumine[J]. Journal of Ethnopharmacology,2023,304:116028.
[13]XUE H, XING H J, WANG B, et al. Cinchonine,a potential oral small-molecule glucagon-like peptide-1 receptor agonist,lowers blood glucose and ameliorates non-alcoholic steatohepatitis[J]. Drug Design,Development and Therapy,2023,17:1417-1432.
[14]WANG H, SHI Y T, MA D N, et al. Cinchonine exerts anti-tumor and immunotherapy sensitizing effects in lung cancer by impairing autophagic-lysosomal degradation[J]. Biomedicine & Pharmacotherapy,2023,164:114980.
[15]WANG Q L, WEI C M, WENG W, et al. Enhancement of oral bioavailability and hypoglycemic activity of liquiritin-loaded precursor liposome[J]. International Journal of Pharmaceutics,2021,592:120036.
[16]WANG Q L, ZHANG K Y, WENG W, et al. Liquiritin-hydroxypropyl-beta-cyclodextrin inclusion complex:preparation,characterization,bioavailability and antitumor activity evaluation[J]. Journal of Pharmaceutical Sciences,2022,111(7):2083-2092.
[17]BAI D D, XIAO W H. Regulatory effects and mechanisms of branched chain amino acids and metabolic intermediates on insulin resistance[J]. Acta Physiologica Sinica, 2023,75(2):291-302.
[18]PANGHAL A, KUMAR V, JENA G. Melphalan induced germ cell toxicity and dose-dependent effects of β-aminoisobutyric acid in experimental rat model:role of oxidative stress,inflammation and apoptosis[J]. Journal of Biochemical and Molecular Toxicology,2023,37(8):e23374.
[19]GHAIAD H R, ALI S O, AL-MOKADDEM A K, et al. Regulation of PKC/TLR-4/NF-κB signaling by sulbutiamine improves diabetic nephropathy in rats[J]. Chemico-Biological Interactions,2023,381:110544.
[20]MROWICKA M, MROWICKI J, DRAGAN G, et al. The importance of thiamine (Vitamin B1) in humans[J]. Bioscience Reports,2023,43(10):BSR20230374.
[21]MOSKOWITZ A, BERG K M, GROSSESTREUER A V, et al. Thiamine for renal protection in septic shock (TRPSS):a randomized,placebo-controlled trial[J]. American Journal of Respiratory and Critical Care Medicine,2023,208(5):570-578.
[22]LIANG Y D, DAI X L, CAO Y, et al. The neuroprotective and antidiabetic effects of trigonelline:a review of signaling pathways and molecular mechanisms[J]. Biochimie,2023,206:93-104.
[23]ZIA S R, WASIM M, AHMAD S. Unlocking therapeutic potential of trigonelline through molecular docking as a promising approach for treating diverse neurological disorders[J]. Metabolic Brain Disease,2023,38(8):2721-2733.
[24]WU Q, GUAN Y B, ZHANG K J, et al. Tanshinone ⅡA mediates protection from diabetes kidney disease by inhibiting oxidative stress induced pyroptosis[J]. Journal of Ethnopharmacology,2023,316:116667.
[25]SI J C, LIU B B, QI K R, et al. Tanshinone ⅡA inhibited intermittent hypoxia induced neuronal injury through promoting autophagy via AMPK-mTOR signaling pathway[J]. Journal of Ethnopharmacology,2023,315:116677.
[26]ZHANG W W, LIU M H, JI Y R, et al. Tanshinone ⅡA inhibits endometrial carcinoma growth through the MAPK/ERK/TRIB3 pathway[J]. Archives of Biochemistry and Biophysics,2023,743:109655.
[27]AMIN M M, ARBID M S. Estimation of ellagic acid and/or repaglinide effects on insulin signaling,oxidative stress,and inflammatory mediators of liver,pancreas,adipose tissue,and brain in insulin resistant/type 2 diabetic rats[J]. Applied Physiology,Nutrition,and Metabolism,2017,42(2):181-192.
[28]LU G Y, WANG X Z, CHENG M, et al. The multifaceted mechanisms of ellagic acid in the treatment of tumors:state-of-the-art[J]. Biomedicine & Pharmacotherapy,2023,165:115132.
[29]SZKUDELSKA K, SZKUDELSKI T. The anti-diabetic potential of betaine. Mechanisms of action in rodent models of type 2 diabetes[J]. Biomedicine & Pharmacotherapy,2022,150:112946.
[30]ZHANG Y, JIA J P. Betaine mitigates amyloid-β-associated neuroinflammation by suppressing the NLRP3 and NF-κB signaling pathways in microglial cells[J]. Journal of Alzheimer’s Disease,2023,94(S1):9-19.
[31]ZHENG L, LEE J, YUE L M, et al. Inhibitory effect of pyrogallol on α-glucosidase:integrating docking simulations with inhibition kinetics[J]. International Journal of Biological Macromolecules,2018,112:686-693.
[32]OZTURK SARIKAYA S B. Acethylcholinesterase inhibitory potential and antioxidant properties of pyrogallol[J]. Journal of Enzyme Inhibition and Medicinal Chemistry,2015,30(5):761-766.
[33]PATEL D K, PATEL K. Therapeutic importance of eriodictyol in the medicine for the treatment of diabetes and associated complication through its insulin secretagogue properties[J]. Metabolism,2022,128:155056.
[34]AZIZI S, MAHDAVI R, VAGHEF-MEHRABANY E, et al. Potential roles of citrulline and watermelon extract on metabolic and inflammatory variables in diabetes mellitus,current evidence and future directions:a systematic review[J]. Clinical and Experimental Pharmacology and Physiology,2020,47(2):187-198.
[35]IVANOVSKI N, WANG H H, TRAN H, et al. L-citrulline attenuates lipopolysaccharide-induced inflammatory lung injury in neonatal rats[J]. Pediatric Research,2023,94(5):1684-1695.
[36]PARK H Y, KIM S W, SEO J, et al. Dietary arginine and citrulline supplements for cardiovascular health and athletic performance:a narrative review[J]. Nutrients,2023,15(5):1268.
[37]LIN P B, ZHANG X J, ZHU B Y, et al. Naringenin protects pancreatic β cells in diabetic rat through activation of estrogen receptor β[J]. European Journal of Pharmacology,2023,960:176115.
[38]CAI J, WEN H L, ZHOU H, et al. Naringenin:a flavanone with anti-inflammatory and anti-infective properties[J]. Biomedicine & Pharmacotherapy,2023,164:114990.
[39]PUNITHAVATHI V R, PRINCE P S M, KUMAR R, et al. Antihyperglycaemic,antilipid peroxidative and antioxidant effects of gallic acid on streptozotocin induced diabetic Wistar rats[J]. European Journal of Pharmacology,2011,650(1):465-471.
[40]JANG J H, PARK J E, HAN J S. Scopoletin inhibits α-glucosidase in vitro and alleviates postprandial hyperglycemia in mice with diabetes[J]. European Journal of Pharmacology,2018,834:152-156.
[41]LEE S G, KIM M M. Anti-inflammatory effect of scopoletin in RAW264. 7 macrophages[J]. Journal of Life Science,2015,25(12):1377-1383.
[42]陈吉刚,庞琦,曾薇等. 甜菜碱对糖尿病肾病小鼠的治疗作用及其机制[J].第三军医大学学报,2012,34(11):1040-1043.
[43]JEONG H,MASON S P,BARABSI A L,et al. Lethality and centrality in protein networks[J]. Nature,2001,411(6833):41-42.
[44]芦宇婷,周仙杰,雷雨,等. 白芸豆提取物联合左旋肉碱对肥胖小鼠的减脂作用[J]. 卫生研究,2022,51(6):1015-1018.
[45]李焕,邓浩,刘晃,等. 左旋肉碱虾青素复合营养素治疗特发性少精子症和弱精子症的多中心临床观察[J]. 中华男科学杂志,2021,27(4):334-339.
[46]张梦洁,郭垚辉,任彬,等. 乙酰左旋肉碱对大鼠脊髓损伤保护作用的实验研究[J]. 中国实用神经疾病杂志,2020,23(17):1479-1483.
[47]JIANG Y, PEI J, ZHENG Y, et al. Gallic acid:a potential anti-cancer agent[J]. Chinese Journal of Integrative Medicine,2022,28(7):661-671.
[48]BHATTACHARYYA S, AHAMMED S M, SAHA B P, et al. The gallic acid-phospholipid complex improved the antioxidant potential of gallic acid by enhancing its bioavailability[J]. AAPS PharmSciTech,2013,14(3):1025-1033.
[49]LIN W L, WANG C J, TSAI Y Y, et al. Inhibitory effect of esculetin on oxidative damage induced by t-butyl hydroperoxide in rat liver[J]. Archives of Toxicology,2000,74(8):467-472.
[50]WANG K, ZHANG Y, EKUNWE S I N,et al. Antioxidant activity and inhibition effect on the growth of human colon carcinoma (HT-29) cells of esculetin from Cortex Fraxini[J]. Medicinal Chemistry Research,2011,20(7):968-974.
[51]KANITSORAPHAN C, RATTANAWONG P, CHAROENSRI S, et al. Trimethylamine N-oxide and risk of cardiovascular disease and mortality[J]. Current Nutrition Reports,2018,7(4):207-213.
[52]陈艳,许丽丽,王丽曼,等. 血浆三甲胺N-氧化物与心肌梗死关系的研究进展[J]. 医药导报,2023,42(4):524-528.
[53]赵霄潇,颜红兵. 三甲胺-N-氧化物在心血管相关疾病发病机制中的研究进展[J]. 心血管病学进展,2020,41(11):1123-1125,1136.
[54]LIU Y W, WANG L J, LI X K, et al. Tanshinone ⅡA improves impaired nerve functions in experimental diabetic rats[J]. Biochemical and Biophysical Research Communications,2010,399(1):49-54.
[55]ZHANG Y, ZHANG L, ZHANG Y, et al. The protective role of liquiritin in high fructose-induced myocardial fibrosis via inhibiting NF-κB and MAPK signaling pathway[J]. Biomedicine & Pharmacotherapy, 2016,84:1337-1349.
[56]ABDEL-MONEIM A, EL-TWAB S M A, YOUSEF A I, et al. Modulation of hyperglycemia and dyslipidemia in experimental type 2 diabetes by gallic acid and p-coumaric acid:the role of adipocytokines and PPARγ[J]. Biomedicine & Pharmacotherapy,2018,105:1091-1097.
[57]MUSTAFA H A, ALBKRYE A M S, ABDALLA B M, et al. Computational determination of human PPARG gene:SNPs and prediction of their effect on protein functions of diabetic patients[J]. Clinical and Translational Medicine,2020,9(1):7.
[58]DEMIR T, ONAY H, SAVAGE D B, et al. Familial partial lipodystrophy linked to a novel peroxisome proliferator activator receptor-γ (PPARG) mutation,H449L:a comparison of people with this mutation and those with classic codon 482 Lamin A/C (LMNA) mutations[J]. Diabetic Medicine,2016,33(10):1445-1450.
[59]LYSSENKO V, ALMGREN P, ANEVSKI D, et al. Genetic prediction of future type 2 diabetes[J]. PLoS Medicine,2005,2(12):e345.

相似文献/References:

[1]郭荔,胡冬民,戴小华,等.糖尿病大鼠P-糖蛋白编码基因Abcb1 mRNA的表达及其对口服恩诺沙星药动学的影响[J].江苏农业学报,2017,(04):874.[doi:doi:10.3969/j.issn.1000-4440.2017.04.023]
 GUO Li,HU Dong-min,DAI Xiao-hua,et al.Abcb1 mRNA expression levels in different organs of diabetic rats and the effect on pharmacokinetics of oral enrofloxain[J].,2017,(11):874.[doi:doi:10.3969/j.issn.1000-4440.2017.04.023]

备注/Memo

备注/Memo:
收稿日期:2024-05-24基金项目:苏州市科技计划项目(SNG2022068)作者简介:张青强(1998-),男,安徽亳州人,硕士研究生,研究方向为营养与功能食品。(E-mail)zhangqingqiang521@gmail.com。马佳佳为共同第一作者。通讯作者:李春阳,(E-mail)lichunyang968@126.com
更新日期/Last Update: 2025-01-20