[1]李云龙,许益伟,郁洁,等.蚯蚓粪施用对滨海盐碱地土壤质量及玉米产量的影响[J].江苏农业学报,2024,(11):2053-2061.[doi:doi:10.3969/j.issn.1000-4440.2024.11.009]
 LI Yunlong,XU Yiwei,YU Jie,et al.Effects of vermicompost application on soil quality and maize yield in coastal saline-alkali land[J].,2024,(11):2053-2061.[doi:doi:10.3969/j.issn.1000-4440.2024.11.009]
点击复制

蚯蚓粪施用对滨海盐碱地土壤质量及玉米产量的影响()
分享到:

江苏农业学报[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2024年11期
页码:
2053-2061
栏目:
耕作栽培·资源环境
出版日期:
2024-11-30

文章信息/Info

Title:
Effects of vermicompost application on soil quality and maize yield in coastal saline-alkali land
作者:
李云龙1许益伟1郁洁2仇美华2王绪奎2左文刚1单玉华1柏彦超13
(1.扬州大学环境科学与工程学院,江苏扬州225127;2.江苏省耕地质量与农业环境保护站,江苏南京210029;3.江苏省有机固体废弃物资源化协同创新中心,江苏南京210018)
Author(s):
LI Yunlong1XU Yiwei1YU Jie2QIU Meihua2WANG Xukui2ZUO Wengang1SHAN Yuhua1BAI Yanchao13
(1.College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225127, China;2.Jiangsu Farmland Quality and Agricultural Environmental Protection Station, Nanjing 210029, China;3.Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing 210018, China)
关键词:
滨海盐碱地蚯蚓粪土壤质量玉米产量
Keywords:
coastal saline-alkali landvermicompostsoil qualitymaize yield
分类号:
S156.4; S156.91
DOI:
doi:10.3969/j.issn.1000-4440.2024.11.009
文献标志码:
A
摘要:
为探究外源有机物料施用对滨海盐碱地土壤质量及玉米产量的影响,以蚯蚓粪作为外源有机物料,本研究设置对照(CK)、蚯蚓粪低施用量(V50)、蚯蚓粪中施用量(V100)和蚯蚓粪高施用量(V200)共4个处理,探讨施用蚯蚓粪对滨海盐碱地土壤理化性质、酶活性、微生物碳源利用情况、微生物群落组成以及对玉米生长和产量的影响。研究结果表明,与对照相比,施用蚯蚓粪的滨海盐碱地玉米株高、生物量及产量显著提升;蚯蚓粪改良后滨海盐碱地土壤pH、盐分含量显著降低,有机碳、全氮、碱解氮和有效磷含量显著增加;施用蚯蚓粪后土壤二乙酸荧光素水解酶、蔗糖酶、脲酶及碱性磷酸酶活性显著提高,土壤微生物碳源代谢活性、香农多样性指数以及丰富度指数显著提升,对氨基酸、酚酸、碳水化合物类能源的代谢能力显著增强。此外,高通量测序结果显示,蚯蚓粪重塑了滨海盐碱地土壤微生物群落,脱硫单胞菌属、芽孢杆菌属、被孢霉属等功能微生物类群的优势地位明显提升;普鲁克分析结果显示,蚯蚓粪施用后滨海盐碱地玉米生长及产量的提升与土壤理化性状、酶活性、微生物群落组成及功能多样性的改善显著相关。综上,蚯蚓粪可以通过消减土壤盐害、碱害,增加土壤有机碳固持、提升养分供应,重塑微生物群落并提升其功能多样性,从而改善滨海盐碱地土壤质量,促进玉米增产。其中,高施用量处理对滨海盐碱地土壤改良及玉米产量的提升效果最佳,但单位有机物增产量有所降低。本研究结果对保障滨海盐碱地农业可持续发展具有重要意义。
Abstract:
In order to explore the effects of exogenous organic ameliorant application on soil quality and maize yield in coastal saline-alkali land, vermicompost was chosen as exogenous organic ameliorant. Four treatments were set up, including non-vermicompost application control (CK), vermicompost application rate of 50 t/hm2 (V50), vermicompost application rate of 100 t/hm2 (V100), and vermicompost application rate of 200 t/hm2 (V200). The effects of vermicompost application on soil physicochemical properties, enzyme activity, microbial carbon source utilization pattern, microbial community composition, and maize growth and yield in coastal saline-alkali land were investigated. The results showed that compared with the control, the plant height, biomass and yield of maize in coastal saline-alkali land with vermicompost were significantly increased. After the application of vermicompost, the soil pH and salt content decreased significantly, and the contents of organic carbon, total nitrogen, alkali-hydrolyzable nitrogen and available phosphorus increased significantly. After the application of vermicompost, the activities of soil fluorescein diacetate hydrolase, sucrase, urease and alkaline phosphatase were significantly increased, the metabolic activity of soil microbial carbon source, Shannon diversity index and richness index were significantly increased, and the metabolic ability to amino acids, phenolic acids and carbohydrates was significantly enhanced. In addition, the results of high-throughput sequencing showed that vermicompost reshaped the soil microbial community in coastal saline-alkali land, and the dominant position of functional microbial groups such as Desulfomonas, Bacillus and Mortierella was significantly improved. Procrustes analysis indicated that the improvement of maize growth and yield in coastal saline-alkali land after vermicompost application was significantly correlated with the improvement of soil physical and chemical properties, enzyme activity, microbial community composition and functional diversity. In summary, vermicompost could improve soil quality and promote maize yield by reducing soil salt and alkali damage, increasing soil organic carbon, improving nutrient supply, reshaping microbial communities and enhancing their functional diversity. The treatment of vermicompost at application rate of 200 t/hm2 exhibited the best effect on the improvement of soil quality and maize yield, but the increment of maize yield resulted by organics per unit mass decreased. The results of this study are of great significance to ensure the sustainable development of agriculture in coastal saline-alkali land.

参考文献/References:

[1]赵英,王丽,赵惠丽,等. 滨海盐碱地改良研究现状及展望[J]. 中国农学通报,2022,38(3):67-74.
[2]BAI Y C, XUE W J, YAN Y Y, et al. The challenge of improving coastal mudflat soil:formation and stability of organo-mineral complexes[J]. Land Degradation & Development,2018,29(4):1074-1080.
[3]YAO R J, YANG J S, WANG X P, et al. Response of soil characteristics and bacterial communities to nitrogen fertilization gradients in a coastal salt-affected agroecosystem[J]. Land Degradation & Development,2021,32(1):338-353.
[4]SHAO H B, CHU L Y, LU H Y, et al. Towards sustainable agriculture for the salt-affected soil[J]. Land Degradation & Development,2019,30(5):574-579.
[5]JIANG S Q, YU Y N, GAO R W, et al. High-throughput absolute quantification sequencing reveals the effect of different fertilizer applications on bacterial community in a tomato cultivated coastal saline soil[J]. Science of the Total Environment,2019,687:601-609.
[6]LONG X H, LIU L P, SHAO T Y, et al. Developing and sustainably utilize the coastal mudflat areas in China[J]. Science of The Total Environment,2016,569:1077-1086.
[7]WANG S T, FENG Q, ZHOU Y P, et al. Dynamic changes in water and salinity in saline-alkali soils after simulated irrigation and leaching[J]. PLoS One,2017,12(11):e0187536.
[8]邓玲,魏文杰,胡建,等. 秸秆覆盖对滨海盐碱地水盐运移的影响[J]. 农学学报,2017,7(11):23-26.
[9]关胜超. 松嫩平原盐碱地改良利用研究[D]. 北京:中国科学院大学,中国科学院东北地理与农业生态研究所,2017.
[10]王世林,曹文侠,王小军,等. 河西走廊荒漠盐碱地人工柽柳林土壤水盐分布[J]. 应用生态学报,2019,30(8):2531-2540.
[11]张建锋,宋玉民,邢尚军,等. 盐碱地改良利用与造林技术[J]. 东北林业大学学报,2002,30(6):124-129.
[12]WANG S J, CHEN Q, LI Y, et al. Research on saline-alkali soil amelioration with FGD gypsum[J]. Resources, Conservation and Recycling,2017,121:82-92.
[13]邢秀芹,张为华,于静娟. 脱硫石膏的施用量对盐碱地葵花生长的影响[J]. 鞍山师范学院学报,2013,15(2):58-61.
[14]左文刚. 生活污泥对新垦滩涂盐碱地快速有机培肥的效应与机制[D]. 扬州:扬州大学,2020.
[15]LI Y L, SHEN C, WANG Y M, et al. Alleviated environmental constraints and restructured fungal microbiome facilitate aggregate formation and stabilization in coastal mudflat saline soil amended by sewage sludge[J]. Land Degradation & Development,2023,34(10):3064-3075.
[16]LI Y L, WANG Y M, GU C H, et al. Differential effects of organic ameliorants on the reassembly of bacterial communities in newly amended coastal mudflat salt-affected soil[J]. Agronomy,2022,12(10):2525.
[17]LI Y L, WANG Y M, SHEN C, et al. Structural and predicted functional diversities of bacterial microbiome in response to sewage sludge amendment in coastal mudflat soil[J]. Biology,2021,10(12):1302.
[18]ZHANG X Y, QI L L, LI W M, et al. Bacterial community variations with salinity in the saltwater-intruded estuarine aquifer[J]. Science of the Total Environment, 2021,755(Part1):142423.
[19]LOPES B C, FIGUEIREDO R S, ARAUJO J C, et al. Bacterial community dynamics in tropical soil after sewage sludge amendment[J]. Water Science & Technology,2020,82(12):2937-2947.
[20]MATTANA S, PETROVICOV B, LANDI L, et al. Sewage sludge processing determines its impact on soil microbial community structure and function[J]. Applied Soil Ecology,2014,75:150-161.
[21]ZHANG Z K, LIU H, LIU X X, et al. Organic fertilizer enhances rice growth in severe saline-alkali soil by increasing soil bacterial diversity[J]. Soil Use and Management,2022,38(1):964-977.
[22]LU P N, BAINARD L D, MA B, et al. Bio-fertilizer and rotten straw amendments alter the rhizosphere bacterial community and increase oat productivity in a saline-alkaline environment[J]. Scientific Reports,2020,10(1):19896.
[23]KANG Y J, XU W J, ZHANG Y, et al. Bloom of tetracycline resistance genes in mudflats following fertilization is attributed to the increases in the shared potential hosts between soil and organic fertilizers[J]. Environmental Science and Pollution Research,2022,29(9):13292-13304.
[24]鲍士旦. 土壤农化分析[M]. 北京:中国农业出版社,2013.
[25]周礼恺. 土壤酶学[M]. 北京:科学出版社,1987.
[26]ADAM G, DUNCAN H. Development of a sensitive and rapid method for the measurement of total microbial activity using fluorescein diacetate (FDA) in a range of soils[J]. Soil Biology and Biochemistry, 2001,33(7/8):943-951.
[27]GARLAND J L, MILLS A L. Classification and characterization of heterotrophic microbial communities on the basis of patterns of community-level sole-carbon-source utilization[J]. Applied and Environmental Microbiology,1991,57(8):2351-2359.
[28]CHOI K H, DOBBS F C. Comparison of two kinds of Biolog microplates (GN and ECO) in their ability to distinguish among aquatic microbial communities[J]. Journal of Microbiological Methods,1999,36(3):203-213.
[29]GU B X, QIN T Y, QIU M H, et al. Addition of exogenous organic ameliorants mediates soil bacteriome and microbial community carbon source utilization pattern in coastal saline-alkaline soil[J]. Agriculture,2024,14(1):44.
[30]ZUO W G, GU C H, ZHANG W J, et al. Sewage sludge amendment improved soil properties and sweet sorghum yield and quality in a newly reclaimed mudflat land[J]. Science of the Total Environment,2019,654:541-549.
[31]TRIVEDI P, SINGH K, PANKAJ U, et al. Effect of organic amendments and microbial application on sodic soil properties and growth of an aromatic crop[J]. Ecological Engineering,2017,102:127-136.
[32]ZUO W A, XU L, QIU M H, et al. Effects of different exogenous organic materials on improving soil fertility in coastal saline-alkali soil[J]. Agronomy-Basel,2023,13(1):61.
[33]GAO G F, LI P F, ZHONG J X, et al. Spartina alterniflora invasion alters soil bacterial communities and enhances soil N2O emissions by stimulating soil denitrification in mangrove wetland[J]. Science of the Total Environment,2019,653:231-240.
[34]NANNIPIERI P, ASCHER-JENULL J, CECCHERINI M T, et al. Microbial diversity and soil functions[J]. European Journal of Soil Science,2017,68(1):12-26.
[35]XIE X F, PU L J, ZHU M, et al. Differential effects of various reclamation treatments on soil characteristics: an experimental study of newly reclaimed tidal mudflats on the east China coast[J]. Science of the Total Environment,2021,768:144996.
[36]GOMEZ E, FERRERAS L, TORESANI S. Soil bacterial functional diversity as influenced by organic amendment application[J]. Bioresource Technology,2006,97(13):1484-1489.
[37]LIU X, GUO K L, HUANG L, et al. Responses of absolute and specific enzyme activity to consecutive application of composted sewage sludge in a Fluventic Ustochrept[J]. PLoS One,2017,12(5):e0177796.
[38]CALLEJA-CERVANTES M E, APARICIO-TEJO P M, VILLADAS P J, et al. Rational application of treated sewage sludge with urea increases GHG mitigation opportunities in Mediterranean soils[J]. Agriculture, Ecosystems & Environment,2017,238:114-127.
[39]BAI Y C, ZUO W G, YAN Y Y, et al. Sewage sludge amendment combined with green manuring to a coastal mudflat salt-soil in eastern China: effects on soil physicochemical properties and maize yield[J]. International Journal of Agronomy,2017(4):1-10.
[40]SAXENA A, KUMAR M, CHAKDAR H, et al. Bacillus species in soil as a natural resource for plant health and nutrition[J]. Journal of Applied Microbiology,2019,128(6):1583-1594.
[41]SCHEID D, STUBNE S. Structure and diversity of Gram-negative sulfate-reducing bacteria on rice roots[J]. FEMS Microbiology Ecology,2001,36(2/3):175-183.
[42]余倩倩,李文涛,邓烈,等. 柑橘皮渣有机肥对特洛维塔甜橙树体营养、果实品质和经济效益的影响[J]. 西南大学学报(自然科学版),2017,39(10):20-26.

相似文献/References:

[1]袁中友,任宗玲,杨淇钧,等.不同肥料及接种蚯蚓对高速公路建设损毁土壤的短期培肥效应[J].江苏农业学报,2017,(03):575.[doi:doi:10.3969/j.issn.1000-4440.2017.03.014]
 YUAN Zhong-you,REN Zong-ling,YANG Qi-jun,et al.Comprehensive effect of fertilization and earthworm inoculation on fertility of soils degraded by highway construction[J].,2017,(11):575.[doi:doi:10.3969/j.issn.1000-4440.2017.03.014]
[2]曹荣荣,刘旭,徐英杰,等.滨海盐碱地棉花铃期冠层空间分布对光合生产的影响[J].江苏农业学报,2020,(04):821.[doi:doi:10.3969/j.issn.1000-4440.2020.04.003]
 CAO Rong-rong,LIU Xu,XU Ying-jie,et al.Effects of canopy space distribution on photosynthetic production of cotton during boll period in coastal saline-alkali area in China[J].,2020,(11):821.[doi:doi:10.3969/j.issn.1000-4440.2020.04.003]

备注/Memo

备注/Memo:
收稿日期:2024-09-07基金项目:江苏省农业科技自主创新资金项目[CX(23)1019]作者简介:李云龙(1989-),男,山西晋中人,博士,讲师,主要从事土壤修复和土壤微生物生态研究。(E-mail)liyunlong@yzu.edu.cn通讯作者:柏彦超,(E-mail)ycbai@yzu.edu.cn
更新日期/Last Update: 2025-01-20