[1]余波,林添资,景德道,等.一个水稻全生育期卷叶突变体的表型分析和基因定位[J].江苏农业学报,2024,(11):1985-1991.[doi:doi:10.3969/j.issn.1000-4440.2024.11.001]
 YU Bo,LIN Tianzi,JING Dedao,et al.Phenotypic analysis and gene localization of a rolled-leaf mutant in rice during the whole growth period[J].,2024,(11):1985-1991.[doi:doi:10.3969/j.issn.1000-4440.2024.11.001]
点击复制

一个水稻全生育期卷叶突变体的表型分析和基因定位()
分享到:

江苏农业学报[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2024年11期
页码:
1985-1991
栏目:
遗传育种·生理生化
出版日期:
2024-11-30

文章信息/Info

Title:
Phenotypic analysis and gene localization of a rolled-leaf mutant in rice during the whole growth period
作者:
余波林添资景德道孙立亭曾生元李闯钱华飞杜灿灿胡庆峰
(江苏丘陵地区镇江农业科学研究所,江苏句容212400)
Author(s):
YU BoLIN TianziJING DedaoSUN LitingZENG ShengyuanLI ChuangQIAN HuafeiDU CancanHU Qingfeng
(Zhenjiang Institute of Agricultural Sciences of the Ning-Zhen Hilly District, Jurong 212400, China)
关键词:
水稻卷叶突变遗传分析基因定位RL9基因
Keywords:
Oryza sativarolled leaf mutantgenetic analysisgene mappingRL9 gene
分类号:
S511
DOI:
doi:10.3969/j.issn.1000-4440.2024.11.001
文献标志码:
A
摘要:
水稻卷叶突变体是研究叶片发育机制和培育理想株型品种的重要资源。本研究以1个可稳定遗传的卷叶突变体(暂命名为rl-z)为试验对象,对其开展表型鉴定和基因定位。表型鉴定结果显示,突变体rl-z的叶片在整个生育期均呈筒状内卷,与其野生型植株相比,突变体的株高、穗长、分蘖数、千粒重均显著下降。遗传分析结果表明,rl-z的突变表型受1对隐性核基因控制。利用突变体rl-z与籼稻品种扬稻6号杂交构建的F2群体进行基因定位,将卷叶基因定位于第9染色体的InDel标记JY11至JY14之间,两标记之间物理距离为38.5 kb,此区间内仅有1个预测基因(RL9,LOC_Os09g23200),该基因编码GARP转录因子。对RL9进行测序,结果表明该基因在第1个外显子103 086~103 121处缺失36个碱基,同时在103 524处存在1个单碱基突变。基因定位结果说明突变体rl-z的卷叶特性可能是由于RL9基因突变导致GARP转录因子功能异常引起的。
Abstract:
Rice rolled-leaf mutants are important resources for studying the mechanisms of leaf development and breeding desirable plant varieties. In this study, a rolled-leaf mutant (named rl-z) with stable inheritance was used as material to conduct phenotypic analysis and gene mapping. Phenotypic identification results showed that the leaves of rl-z mutants were inner rolled, forming a tube-like structure throughout the whole growth period. Compared with wild type rice, the plant height, panicle length, number of tillers, and thousand-grain weight of mutant were significantly decreased. Genetic analysis displayed that the mutant phenotype of rl-z was controlled by a pair of recessive genic genes. Gene mapping was performed by using the F2 population produced by crossing rl-z mutant with an indica rice variety Yangdao 6. The rolled-leaf gene was mapped between the InDel markers JY11 and JY14 on chromosome 9, and the physical distance between the two markers was 38.5 kb. There was only one predicted gene (RL9, LOC_Os09g23200) within the region, and this gene encoded a GARP transcription factor. Sequencing results showed that the first exon of RL9 was found to exist a 36 bp deletion (nucleotide position 103 086-103 121) and a single-base mutation (nucleotide position 103 524). Results of gene mapping suggested that the rolled leaf characteristic of rl-z mutant was likely to be caused by the abnormal function of GARP transcription factor owing to the mutation of RL9.

参考文献/References:

[1]LIAO S Y, QIN X M, LUO L, et al. CRISPR/Cas9-induced mutagenesis of semi-rolled leaf1, 2 confers curled leaf phenotype and drought tolerance by influencing protein expression patterns and ROS scavenging in rice (Oryza sativa L.)[J]. Agronomy,2019,9(11):728.
[2]FANG J J, GUO T T, XIE Z W, et al. The URL1-ROC5-TPL2 transcriptional repressor complex represses the ACL1 gene to modulate leaf rolling in rice[J]. Plant Physiology,2021,185(4):1722-1744.
[3]ZHANG X B, WANG Y, ZHU X Y, et al. Curled flag leaf 2, encoding a cytochrome P450 protein, regulated by the transcription factor Roc5, influences flag leaf development in rice[J]. Frontiers in Plant Science,2021,11:616977.
[4]王晓,顾福根,孙丙耀. 一个有Ds插入引起的泡状细胞异常水稻卷叶突变体[J]. 苏州大学学报(自然科学版),2012,28(2):89-94.
[5]ZHANG J J, WU S Y, JIANG J L, et al. A detailed analysis of the leaf rolling mutant sll2 reveals complex nature in regulation of bulliform cell development in rice (Oryza sativa L.)[J]. Plant Biology,2015,17(2):437-448.
[6]MA Y H, ZHAO Y, SHANGGUAN X X, et al. Overexpression of OsRRK1 changes leaf morphology and defense to insect in rice[J]. Frontiers in Plant Science,2017,24(8):1783.
[7]ZOU L P, SUN X H, ZHANG Z G, et al. Leaf rolling controlled by the homeodomain leucine zipper class IV gene Roc5 in rice[J]. Plant Physiology,2011,156:1589-1602.
[8]FUJINO K, MATSUDA Y, Ozawa K, et al. NARROW LEAF7 controls leaf shape mediated by auxin in rice[J]. Molecular Genetics and Genomics,2008,279:499-507.
[9]XU Y, WANG Y H, LONG Q Z, et al. Overexpression of OsZHD1, a zinc finger homeodomain class homeobox transcription factor, induces abaxially curled and drooping leaf in rice[J]. Planta,2014,239(4):803-816.
[10]HIBARA K I, OBARA M, HAYASHIDA E, et al. The ADAXIALIZED LEAF1 gene functions in leaf and embryonic pattern formation in rice[J]. Developmental Biology,2009,334(2):345-354.
[11]ZHANG G H, XU Q, ZHU X D, et al. SHALLOT-LIKE1 is a KANADI transcription factor that modulates rice leaf rolling by regulating leaf abaxial cell development[J]. The Plant Cell,2009,21(3):719-735.
[12]SHI Z Y, WANG J, WAN X S, et al. Over-expression of rice OsAGO7 gene induces upward curling of the leaf blade that enhanced erect-leaf habit[J]. Planta,2007,226:99-108.
[13]FANG L K, ZHAO F M, CONG Y F, et al. Rolling-leaf14 is a 2OG-Fe (Ⅱ) oxygenase family protein that modulates rice leaf rolling by affecting secondary cell wall formation in leaves[J]. Plant Biotechnology Journal,2012,10(5):524-532.
[14]ZHAO S S, ZHAO L, LIU F X, et al. NARROW AND ROLLED LEAF2 regulates leaf shape, male fertility, and seed size in rice[J]. Journal of Integrative Plant Biology,2016,58(12):983-996.
[15]WU R H, LI S B, HE S, et al. CFL1, a WW domain protein, regulates cuticle development by modulating the function of HDG1, a class IV homeodomain transcription factor, in rice and Arabidopsis[J]. The Plant Cell,2011,23(9):3392-3411.
[16]YANG C H, LI D Y, LIU X, et al. OsMYB103L, an R2R3-MYB transcription factor, influences leaf rolling and mechanical strength in rice (Oryza sativa L.)[J]. BMC Plant Biology,2014,14:158.
[17]XU P, ALI A, HAN B L, et al. Current advances in molecular basis and mechanisms regulating leaf morphology in rice[J]. Frontiers in Plant Science,2018,9:1528.
[18]周亭亭,饶玉春,任德勇. 水稻卷叶细胞学与分子机制研究进展[J]. 植物学报,2018,53(6):848-855.
[19]CHEN W, SHENG Z H, CAI Y C, et al. Rice morphogenesis and chlorophyll accumulation is regulated by the protein encoded by NRL3 and its interaction with NAL9[J]. Frontiers in Plant Science,2019,10:175.
[20]MURRAY M G, THOMPON W F. Rapid isolation of high molecular weight plant DNA[J]. Nucleic Acids Research,1980,8(19):4321-4325.
[21]田晓庆,桑贤春,赵芳明,等. 水稻卷叶基因RL13的遗传分析和分子定位[J]. 作物学报,2012,38(3):423-428.
[22]LI L, XUE X, CHEN Z X, et al. Isolation and characterization of rl (t), a gene that controls leaf rolling in rice[J]. Chinese Science Bulletin,2014,59(25):3142-3152.
[23]ZHANG G H, HOU X, WANG L, et al. PHOTO-SENSITIVE LEAF ROLLING 1 encodes a polygalacturonase that modifies cell wall structure and drought tolerance in rice[J]. New Phytologist,2021,229(2):890-901.
[24]谢园华,李凤菲,马晓慧,等. 水稻半外卷叶突变体sol1的表型分析与基因定位[J]. 作物学报,2020,46(2):204-213.
[25]YAN C J, YAN S, ZHANG Z Q, et al. Genetic analysis and gene fine mapping for a rice novel mutant (rl9(t)) with rolling leaf character[J]. Chinese Science Bulletin,2006,51:63-69.
[26]邵元健,潘存红,陈宗祥,等. 水稻不完全隐性卷叶主基因以 rl (t)的精细定位[J]. 科学通报,2005,50(19):2107-2113.
[27]邵元健,陈宗祥,张亚芳,等. 一个水稻卷叶主效 QTL 的定位及其物理图谱的构建[J]. 遗传学报(英文版),2005(5):501-506.
[28]CHEN Q, XIE Q, GAO J, et al. Characterization of rolled and erect Leaf 1 in regulating leave morphology in rice[J]. Journal of Experimental Botany,2015,66(19):6047-6058.
[29]张龙弟,王雁伟,张治国,等. 一个显性卷叶突变体z2的遗传分析与精细定位[J]. 生物技术通报,2015,31(6):100-105.
[30]LI L, ShI Z Y, LI L, et al. Overexpression of ACL1 (abaxially curled leaf 1) increased bulliform cells and induced abaxial curling of leaf blades in rice[J]. Molecular Plant,2010,3(5):807-817.
[31]SUN J, CUI X A, TENG S, et al. HD-ZIP IV gene Roc8 regulates the size of bulliform cells and lignin content in rice[J]. Plant Biotechnology Journal,2020,18(12):2559-2572.
[32]LUO Y Z, ZHAO F M, SANG X C, et al. Genetic analysis and gene mapping of a novel rolled-leaf mutant rl12 (t) in rice[J]. Acta Agronomica Sinica,2009,35(11):1967-1972.
[33]邓秋雨,肖应辉. 水稻卷叶类型及调控机制研究进展[J]. 作物研究,2021,35(4):376-384.
[34]YAN S, YAN C J, ZENG X H, et al. ROLLED LEAF 9, encoding a GARP protein, regulates the leaf abaxial cell fate in rice[J]. Plant Molecular Biology,2008,68(3):239-250.
[35]葛倩雯,金宝花,傅小进,等. 水稻卷叶矮化突变体rld的表型鉴定及基因精细定位[J]. 浙江师范大学学报 (自然科学版),2019,42(4):434-440.
[36]吴方喜,罗曦,蒋家焕,等. 水稻卷叶突变体基因shallot like1-Fuhui673鉴定、克隆与序列分析[J]. 科学通报,2018,63(23):2369-2377.
[37]解志伟,孙伟,尹亮,等. 一个新的水稻内卷叶突变体的表型和遗传分析[J]. 作物学报,2013,39(11):1970-1975.

相似文献/References:

[1]王士磊,丁正权,黄海祥.水稻隐性早熟突变体ref早熟性的遗传分析和基因定位[J].江苏农业学报,2016,(04):721.[doi:10.3969/j.issn.100-4440.2016.04.001]
 WANG Shi-lei,DING Zheng-quan,HUANG Hai-xiang.Inheritance and gene mapping of recessive earliness in rice (Oryza sativa L.)[J].,2016,(11):721.[doi:10.3969/j.issn.100-4440.2016.04.001]
[2]王在满,郑乐,张明华,等.不同播种方式对直播水稻倒伏指数和根系生长的影响[J].江苏农业学报,2016,(04):725.[doi:10.3969/j.issn.100-4440.2016.04.002]
 WANG Zai-man,ZHENG Le,ZHANG Ming-hua,et al.Effects of seeding manners on lodging index and root growth of directseeded rice[J].,2016,(11):725.[doi:10.3969/j.issn.100-4440.2016.04.002]
[3]易能,薛延丰,石志琦,等.微囊藻毒素对水稻种子萌发和幼苗生长的胁迫作用[J].江苏农业学报,2016,(04):729.[doi:10.3969/j.issn.100-4440.2016.04.003]
 YI Neng,XUE Yan-feng,SHI Zhi-qi,et al.Inhibitory effect of microcystins on seed germination and seedling growth of rice[J].,2016,(11):729.[doi:10.3969/j.issn.100-4440.2016.04.003]
[4]刘凯,王爱民,严国红,等.一个水稻显性矮秆突变体的遗传特性与降株高能力[J].江苏农业学报,2016,(05):968.[doi:10.3969/j.issn.1000-4440.2016.05.002]
 LIU Kai,WANG Ai-min,YAN Guo-hong,et al.Genetic analysis and plant height reduction of a dominant dwarf mutant of rice[J].,2016,(11):968.[doi:10.3969/j.issn.1000-4440.2016.05.002]
[5]王红,杨镇,裴文琪,等.功能性微生物制剂对镉胁迫下水稻生长及生理特性的影响[J].江苏农业学报,2016,(05):974.[doi:10.3969/j.issn.1000-4440.2016.05.003]
 WANG Hong,YANG Zhen,PEI Wen-qi,et al.Growth and physiological characteristics of cadmium-stressed rice influenced by functional microorganism agent[J].,2016,(11):974.[doi:10.3969/j.issn.1000-4440.2016.05.003]
[6]孙玲,单捷,毛良君,等.基于遥感和Moran's I指数的水稻面积变化空间自相关性研究[J].江苏农业学报,2016,(05):1060.[doi:10.3969/j.issn.1000-4440.2016.05.017]
 SUN Ling,SHAN Jie,MAO Liang-jun,et al.Spatial autocorrelation of changes in paddy rice area based on remote sensing and Moran’s I index[J].,2016,(11):1060.[doi:10.3969/j.issn.1000-4440.2016.05.017]
[7]张晓忆,李卫国,景元书,等.多种光谱指标构建决策树的水稻种植面积提取[J].江苏农业学报,2016,(05):1060.[doi:10.3969/j.issn.1000-4440.2016.05.018]
 ZHANG Xiao-yi,LI Wei-guo,JING Yuan-shu,et al.Extraction of paddy rice area by constructing the decision tree with multiple spectral indices[J].,2016,(11):1060.[doi:10.3969/j.issn.1000-4440.2016.05.018]
[8]裔传灯,李玮,王德荣,等.水稻GW5基因的1212-bp Indel变异对粒形的影响[J].江苏农业学报,2016,(06):1201.[doi:doi:10.3969/j.issn.1000-4440.2016.06.001]
 YI Chuan-deng,LI Wei,WANG De-rong,et al.Effect of 1212-bp Indel variation of gene GW5 on rice grain shape[J].,2016,(11):1201.[doi:doi:10.3969/j.issn.1000-4440.2016.06.001]
[9]刘红江,陈虞雯,张岳芳,等.不同播栽方式对水稻叶片光合特性及产量的影响[J].江苏农业学报,2016,(06):1206.[doi:doi:10.3969/j.issn.1000-4440.2016.06.002]
 LIU Hong-jiang,CHEN Yu-wen,ZHANG Yue-fang,et al.Effects of planting pattern on leaf photosynthetic characteristics and yield of rice[J].,2016,(11):1206.[doi:doi:10.3969/j.issn.1000-4440.2016.06.002]
[10]郭保卫,许轲,魏海燕,等.钵苗机插水稻茎秆的抗倒伏能力[J].江苏农业学报,2016,(06):1280.[doi:doi:10.3969/j.issn.1000-4440.2016.06.014]
 GUO Bao-wei,XU Ke,WEI Hai-yan,et al.Culm lodging resistance characteristics of bowl seedling mechanical-transplanting rice[J].,2016,(11):1280.[doi:doi:10.3969/j.issn.1000-4440.2016.06.014]

备注/Memo

备注/Memo:
收稿日期:2023-07-19基金项目:江苏省科技计划重点项目(BE2021374)作者简介:余波(1981-) ,男,江苏仪征人,硕士,副研究员,主要研究方向为水稻新品种选育。(E-mail)151685361@ qq.com通讯作者:龚红兵,(Tel)0511-80978075;(E-mail)1179809265@qq.com
更新日期/Last Update: 2025-01-20