[1]张雨,马文娟,丁怡如,等.莴苣SBP转录因子基因家族鉴定及其在茎用莴苣茎膨大期的表达分析[J].江苏农业学报,2024,(10):1923-1932.[doi:doi:10.3969/j.issn.1000-4440.2024.10.017]
 ZHANG Yu,MA Wenjuan,DING Yiru,et al.Identification of lettuce SBP transcription factor gene family and its expression analysis in stem expansion stage of stem lettuce[J].,2024,(10):1923-1932.[doi:doi:10.3969/j.issn.1000-4440.2024.10.017]
点击复制

莴苣SBP转录因子基因家族鉴定及其在茎用莴苣茎膨大期的表达分析()
分享到:

江苏农业学报[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2024年10期
页码:
1923-1932
栏目:
园艺
出版日期:
2024-10-30

文章信息/Info

Title:
Identification of lettuce SBP transcription factor gene family and its expression analysis in stem expansion stage of stem lettuce
作者:
张雨马文娟丁怡如柳天义廉荣齐黄莹
(临沂大学农林科学学院, 山东临沂276000)
Author(s):
ZHANG YuMA WenjuanDING YiruLIU TianyiLIAN RongqiHUANG Ying
(College of Agriculture and Forestry, Linyi University, Linyi 276000, China)
关键词:
莴苣SBP家族转录因子茎膨大期表达模式
Keywords:
lettuceSBP family transcription factorstem expansion stageexpression patterns
分类号:
S636.2
DOI:
doi:10.3969/j.issn.1000-4440.2024.10.017
文献标志码:
A
摘要:
SBP家族基因在植物生长发育过程中具有重要作用。为明确茎用莴苣SBP家族基因染色体分布、启动子顺式作用元件、茎膨大期表达特征及其编码蛋白质的理化性质,本研究以拟南芥SBP蛋白氨基酸序列为参考筛选鉴定莴苣SBP家族基因,进行莴苣SBP家族基因的染色体定位、进化树构建、启动子顺式作用元件分析,构建其编码蛋白质的互作网络,并利用转录组测序技术及实时荧光定量PCR分析茎用莴苣茎膨大期SBP家族基因的表达模式。结果表明,在莴苣基因组中共鉴定到27个SBP基因,可分为7个亚族,不均匀分布于8条染色体上。多个SBP转录因子与植物开花相关蛋白LFY、乙烯响应转录因子(TOE2、TOE3、SMZ、SNZ)存在互作。在茎用莴苣茎膨大过程中,13个SBP基因的表达模式存在差异。随着茎用莴苣茎的膨大,LsSBP25的表达量呈增加趋势,而LsSBP10、LsSBP22的表达量逐步降低。本研究结果可为进一步探究莴苣SBP家族基因在莴苣生长发育过程中的作用提供基础。
Abstract:
SBP family genes play important roles in the growth and development process of plants. In order to identify the chromosomal distribution, promoter cis-acting elements, expression characteristics in stem expansion stage and the physicochemical properties of proteins encoded by SBP family genes, the lettuce SBP family genes were screened and identified based on the amino acid sequence of SBP protein in Arabidopsis thaliana. The chromosome localization, evolutionary tree construction and promoter cis-acting element analysis of SBP family genes in lettuce were performed, and the interaction network of proteins encoded by SBP family genes was constructed. The expression patterns of SBP family genes were analyzed by transcriptome sequencing and quantitative real-time PCR. The results showed that there were 27 SBP genes in lettuce, and they could be classified into seven subgroups. The SBP genes were unevenly distributed on eight chromosomes. Some SBP transcription factors could interact with flowering related protein LFY, ethylene response transcription factors (TOE2, TOE3, SMZ, SNZ). The expression patterns of 13 SBP genes were changed in stem expansion stage of stem lettuce. The expression levels of LsSBP25 increased during the process of stem enlargement, while the expression levels of LsSBP10 and LsSBP22 decreased during the process of stem enlargement. The results of this study can provide a basis for further investigation of the role of SBP family genes in the growth and development of lettuce.

参考文献/References:

[1]YANG X, GIL M I, YANG Q C, et al. Bioactive compounds in lettuce:highlighting the benefits to human health and impacts of preharvest and postharvest practices[J]. Comprehensive Reviews in Food Science and Food Safety,2022,21(1):4-45.
[2]赵盈盈,秦晓晓,韩莹琰,等. 莴苣LsMYB44基因的克隆及表达分析[J]. 北京农学院学报,2022,37(2):39-44.
[3]王丽慧,张广楠,孙雪梅,等. 24份茎用莴苣种质资源表型性状的遗传多样性分析[J]. 分子植物育种,2020,18(19):6530-6538.
[4]XIE X, YUE S, SHI B, et al. Comprehensive analysis of the SBP family in blueberry and their regulatory mechanism controlling chlorophyll accumulation[J]. Frontier in Plant Science,2021,12:703994.
[5]LI Z W, YANG Y J, CHEN B, et al. Genome-wide identification and expression analysis of SBP-box gene family reveal their involvement in hormone response and abiotic stresses in Chrysanthemum nankingense[J]. Peer J,2022,10:e14241.
[6]MA Y, XUE H, ZHANG F, et al. The miR156/SPL module regulates apple salt stress tolerance by activating MdWRKY100 expression[J]. Plant Biotechnology Journal,2021,19(2):311-323.
[7]LAN T, ZHENG Y L, SU Z L, et al. OsSPL10,a SBP-box gene,plays a dual role in salt tolerance and trichome formation in rice (Oryza sativa L.)[J]. Genes Genomes Genetic,2019,9(12):4107-4114.
[8]LI H S, MA B, LUO Y W, et al. The mulberry SPL gene family and the response of MnSPL7 to silkworm herbivory through activating the transcription of MnTT2L2 in the catechin biosynthesis pathway[J]. International Journal of Molecular Science,2022,23(3):1141.
[9]SCHWARZ S, GRANDE A, BUJDOSO N S, et al. The microRNA regulated SBP-box genes SPL9 and SPL15 control shoot maturation in Arabidopsis[J]. Plant Molecular Biology,2008,67(1/2):183-195.
[10]ZHAO X, ZHANG M, HE X, et al. Genome-wide identification and expression analysis of the SPL gene family in three orchids[J]. International Journal of Molecular Science,2023,24(12):10039.
[11]GAO J, PENG H, CHEN F, et al. Genome-wide identification and characterization,phylogenetic comparison and expression profiles of SPL transcription factor family in B. juncea (Cruciferae) [J]. PLoS One,2019,14(11):e0224704.
[12]ZHENG C, YE M, SANG M, et al. A regulatory network for miR156-SPL module in Arabidopsis thaliana[J]. International Journal of Molecular Science,2019,20(24):6166.
[13]XIE K B, WU C Q, XIONG L Z. Genomic organization, differential expression, and interaction of SQUAMOSA promoter-binding-like transcription factors and microRNA156 in rice[J]. Plant Physiology,2006,142(1):280-293.
[14]ZHU T, LIU Y, MA L L, et al. Genome-wide identification, phylogeny and expression analysis of the SPL gene family in wheat[J]. BMC Plant Biology,2020,20(1):420.
[15]蔡倩,赵甜甜,刘梦迪,等. 大麦SBP转录因子的鉴定与表达分析[J]. 麦类作物学报,2020,40(1):65-74.
[16]ZHANG D Y, HANZ L, LI J Q, et al. Genome-wide analysis of the SBP-box gene family transcription factors and their responses to abiotic stresses in tea (Camellia sinensis)[J]. Genomics,2020,112(3):2194-2202.
[17]WANG Y Z, RUAN Q, ZHU X L, et al. Identification of Alfalfa SPL gene family and expression analysis under biotic and abiotic stresses[J]. Science Reports,2023,13(1):84.
[18]LI J, FAN R, WU B D, et al. Genome-wide identification and functional exploration of SBP-box gene family in black pepper (Piper nigrum L)[J]. Genes,2021,12(11):1740.
[19]SONG N, CHENG Y L, PENG W Y, et al. Genome-wide characterization and expression analysis of the SBP-box gene family in sweet orange (Citrus sinensis)[J]. International Journal of Molecular Science,2021,22(16):8918.
[20]HUANG Y, LI Y, LIU Z, et al. Combined analysis of the transcriptome and metabolome provides insights into the fleshy stem expansion mechanism in stem lettuce[J]. Frontier in Plant Science,2022,13:1101199.
[21]YAMAGUCHI N. LEAFY, a pioneer transcription factor in plants:a mini-review[J]. Frontier in Plant Science,2021,12:701406.
[22]CARDON G, HOHMANN S, KLEIN J, et al. Molecular characterization of the Arabidopsis SBP-box genes[J]. Gene,1999,237:91-104.
[23]TRIOATHIR K, OVERBEEK W, SINGH J. Global analysis of SBP gene family in Brachypodium distachyon reveals its association with spike development[J]. Science Report,2020,10(1):15032.
[24]LI J, HOU H, LI X, et al. Genome-wide identification and analysis of the SBP-box family genes in apple (Malus×domestica Borkh)[J]. Plant Physiology Biochemistry,2013,70:100-114.
[25]SALINAS M, XING S, HOHMANN S, et al. Genomic organization, phylogenetic comparison and differential expression of the SBP-box family of transcription factors in tomato[J]. Planta,2012,235(6):1171-1184.
[26]LIU Y H, ASLAM M, YAO L A, et al. Genomic analysis of SBP gene family in Saccharum spontaneum reveals their association with vegetative and reproductive development[J]. BMC Genomics,2021,22:767.
[27]CARDON G H, HOHMANN S, NETTESHEIM K, et al. Functional analysis of the Arabidopsis thaliana SBP-box gene SPL3:a novel gene involved in the floral transition[J]. Plant Journal,1997,12(2):367-377.
[28]UNTE U S, SORENSEN A M, PESARESI P, et al. SPL8, an SBP-box gene that affects pollen sac development in Arabidopsis[J]. Plant Cell,2003,15(4):1009-1019.
[29]XING S, SALINAS M, GARCIA-MOLONA A, et al. SPL8 and miR156-targeted SPL genes redundantly regulate Arabidopsis gynoecium differential patterning[J]. Plant Journal,2013,75(4):566-577.
[30]MIURA K, IKEDA M, MATSUBARA A, et al. OsSPL14 promotes panicle branching and higher grain productivity in rice[J]. Nature Genetics,2010,42(6):545-549.
[31]WANG S, WU K, YUAN Q, et al. Control of grain size, shape and quality by OsSPL16 in rice[J]. Nature Genetics,2012,44(8):950-954.
[32]CHUCK G S, BROWN P J, MEELEY R, et al. Maize SBP-box transcription factors unbranched2 and unbranched3 affect yield traits by regulating the rate of lateral primordia initiation[J]. Proceedings of National Academy Sciences,2014,111(52):18775-18780.
[33]WAHEED S, ZENG L. The critical role of miRNAs in regulation of flowering time and flower development[J]. Genes,2020,11(3):319.
[34]LI C, LU S. Molecular characterization of the SPL gene family in Populus trichocarpa[J]. BMC Plant Biology,2014,14:131.
[35]YAMAGUCHI A, ABE M. Regulation of reproductive development by non-coding RNA in Arabidopsis:to flower or not to flower[J]. Journal Plant Research,2012,125(6):693-704.
[36]DAI Z, WANG J, YANG X, et al. Modulation of plant architecture by the miR156f-OsSPL7-OsGH3.8 pathway in rice[J]. Journal of Experimental Botany,2018,69(21):5117-5130.
[37]STIONE J M, LIANG X, NEKL E R, et al. Arabidopsis AtSPL14,a plant-specific SBP-domain transcription factor, participates in plant development and sensitivity to fumonisin B1[J]. Plant Journal,2005,1(5):744-754.
[38]CHAO L M, LIU Y Q, CHEN D Y, et al. Arabidopsis transcription factors SPL1 and SPL12 confer plant thermotolerance at reproductive stage[J]. Molecular Plant,2017,10(5):735-748.

备注/Memo

备注/Memo:
收稿日期:2023-10-08基金项目:山东省自然科学基金项目(ZR2020QC156);国家自然科学基金青年项目(32102405);大学生创新创业训练计划项目(X202310452399、X202110452278)作者简介:张雨(2002-),女,山东菏泽人,本科生,主要从事蔬菜分子生物学研究。(E-mail)1291539023@qq.com通讯作者:黄莹,(E-mail)hyhappy1314@163.com
更新日期/Last Update: 2024-11-21